
Checking History-Determinism is NP-hard
for Parity Automata

Aditya Prakash

University of Warwick, UK
aditya.prakash@warwick.ac.uk

Abstract. We show that the problem of checking if a given nonde-
terministic parity automaton simulates another given nondeterministic
parity automaton is NP-hard. We then adapt the techniques used for
this result to show that the problem of checking history-determinism for
a given parity automaton is NP-hard. This is an improvement from Ku-
perberg and Skrzypczak’s previous lower bound of parity games from
2015. We also show that deciding if Eve wins the one-token game or
the two-token game of a given parity automaton is NP-hard. Finally, we
show that the problem of deciding if the language of a nondeterministic
parity automaton is contained in the language of a history-deterministic
parity automaton can be solved in quasi-polynomial time.

1 Introduction

Deciding language inclusion between two automata is a fundamental problem in
verification, wherein we ask whether all executions of an implementation satisfy
a given specification. Unfortunately, the problem of checking language inclusion
is often computationally hard. For parity automata—which are the focus of this
paper—it is PSPACE-complete, with PSPACE-hardness already occurring for
finite state automata [40].

On the other hand, simulation is a fundamental behavioural relation between
two automata [35,24], which is a finer relation than language inclusion and is
easier to check. For parity automata, simulation can be decided in polynomial
time if the parity indices are fixed; otherwise it is in NP [13]. Note that while
simulation between two automata is sufficient to guarantee language inclusion,
it is not necessary.

For history-deterministic automata, however, the relation of language inclu-
sion is equivalent to simulation [9,8], thus making them suitable for verification.
These are nondeterministic automata where the nondeterminism can be resolved
‘on-the-fly’, just based on the prefix of the word read so far. The definition we
use here was introduced by Henzinger and Piterman in 2006, where they dubbed
it ‘good-for-games’ automata, while the term ‘history-determinism’ was coined
by Colcombet [15] in the context of regular cost automata.

History-deterministic parity automata are more succinct than their deter-
ministic counterparts [29] whilst still maintaining tractability for the problems of

ar
X

iv
:2

31
0.

13
49

8v
1 

 [
cs

.F
L

] 
 2

0 
O

ct
 2

02
3



2 Aditya Prakash

verification and synthesis on them [25,29,8]. Consequently, history-deterministic
parity automata have been the subject of extensive research [29,5,3,38,2,30],
and has garnered significant attention over the recent years beyond parity au-
tomata as well, extending to quantitative automata [6,7], infinite state sys-
tems [22,33,36,10,20], and timed automata [9].

Despite these recent research efforts, a significant gap remains in understand-
ing the complexity of checking whether a given parity automaton is history-
deterministic. While Henzinger and Piterman have shown an EXPTIME upper
bound [25], the best lower bound known so far is by Kuperberg and Skrzypczak
since 2015 [29], who showed that checking for history-determinism is at least as
hard as finding the winner of a parity game [29]—a problem that can be solved
in quasi-polynomial time and is in NP∩ coNP (and even in UP∩ coUP [27]).

Kuperberg and Skrzypczak also gave a polynomial-time algorithm to check
for history-determinism of co-Büchi automata in their work [29]. This was fol-
lowed by a polynomial time algorithm to check for history-determinism of Büchi
automata in 2018 by Bagnol and Kuperberg [3], who showed that in order to
check if a Büchi automaton is history-deterministic, it suffices to find the winner
of the so-called ‘two-token game’ of the automaton. This connection between
history-determinism and two-token games was extended in 2020 to co-Büchi au-
tomata by Boker, Kuperberg, Lehtinen, and Skrzypczak [4]. It is conjectured
that the winner of the two-token game of a parity automaton characterises its
history-determinism. While the two-token conjecture is open to date, showing
this conjecture would imply that one can check history-determinism of a given
parity automata with a fixed parity index in polynomial time.

Our contributions. We show that checking for simulation between two parity
automata is NP-hard when the parity index is not fixed. Since simulation is
known to be in NP, this establishes the problem to be NP-complete (Theo-
rem 10).

An adaptation of our proof of Theorem 10 gives us that checking history-
determinism for a parity automata is also NP-hard (Theorem 14), when the par-
ity index is not fixed. This is an improvement on Kuperberg and Skrzypczak’s
result from 2015, which shows that checking history-determinism for parity au-
tomata is at least as hard as solving parity games [29]. We also show, using the
same reduction, that checking whether Eve wins the 2-token game (of a given
parity automaton) is NP-hard, while checking whether Eve wins the 1-token
game is NP-complete (Theorem 14).

As remarked earlier, for history-deterministic parity automata, the relation
of language inclusion is equivalent to simulation. This gives us an immediate
NP upper bound for checking language inclusion of a nondeterministic par-
ity automaton in an HD-parity automata, as was observed by Schewe [38]. We
show that we can do better, by showing the problem to be decidable in quasi-
polynomial time (Theorem 19).



Checking History-Determinism is NP-hard for Parity Automata 3

Overview of the paper: one reduction for all. The central problem used
in our reduction is of checking whether Eve wins a 2-D parity game, which is
known to be NP-complete due to Chatterjee, Henzinger and Piterman [13]. In
Section 3, we give a reduction from this problem to checking for simulation be-
tween two parity automata, thus establishing its NP-hardness (Theorem 10). We
then show, in Section 4.1, that the problem of checking whether Eve wins a good
2-D parity games—a technical subclass of 2-D parity games—is also NP-hard.
In Section 4.2, we show that modifying the reduction in proof of Theorem 10
to take as inputs good 2-D parity games yields NP-hardness for the problems
of checking history-determinism (Lemma 13) and of checking if Eve wins the
1-token game or the 2-token game (Theorem 14). Finally, in Section 5, we give a
quasi-polynomial algorithm to check whether the language of a nondeterministic
parity automaton is contained in the language of a history-deterministic parity
automaton (Theorem 19), by reducing to finding the winner in a parity game.

2 Preliminaries

We let N = {0, 1, 2, · · · } to be the set of natural numbers, and ω to be the
cardinality of N. We will use [i, j] to denote the set of integers in the interval
{i, i + 1, . . . , j} for two natural numbers i, j with i < j, and [j] for the interval
[0, j]. An alphabet Σ is a finite set of letters. We use Σ∗ and Σω to denote the
set of words of finite and countably infinite length over Σ respectively. We also
let ε denote the unique word of length 0.

2.1 Game arenas

An arena is a directed graph G = (V,E) with vertices partitioned as V∀∀∀ and V∃∃∃
between two players Adam and Eve respectively. Additionally, a vertex v0 ∈ V∀∀∀
is designated as the initial vertex. We say that the set of vertices V∃∃∃ is owned
by Eve while the set of vertices V∀∀∀ is owned by Adam. Additionally, we assume
that the edges E don’t have both its start and end vertex in V∃∃∃ or V∀∀∀.

Given an arena as above, a play of this arena is an infinite path starting at
v0, and is formed as follows. A play starts with a token at the start vertex v0,
and proceeds for countably infinite rounds. At each round, the player who owns
the vertex on which the token is currently placed chooses an outgoing edge, and
the token is moved along this edge to the next vertex for another round of play.
This creates an infinite path in the arena, which we call a play of G.

A game G consists of an arena G = (V,E) and a winning condition given
by a language L ⊆ Eω. We say that Eve wins a play ρ in G if ρ is in L, and
Adam wins otherwise. Eve is said to have a winning strategy if she has a strategy
to ensure that any play that can be produced when she plays according to her
strategy is winning for Eve. We say that Eve wins the game if she has a winning
strategy. Winning strategies are defined for Adam analogously, and we say that
Adam wins the game if he has a winning strategy. In this paper we will deal
with ω-regular games, which are known to be determined [34,23], i.e. each game
has a winner. Two games are equivalent if they have the same winner.



4 Aditya Prakash

2.2 Parity conditions

Let G = (V,E) be a (finite or infinite) directed graph equipped with a priority
function χ : E −! N that assigns each edge with a natural number, called its
priority. We say that an infinite path ρ in G satisfies the χ-parity condition if
the highest priority occurring infinitely often in the path is even. When clear
from the context, we will drop ‘parity condition’ and instead say that ρ satisfies
χ.

A parity condition is easily dualised. Given a priority function χ as above,
consider the priority function χ′ := χ+ 1 that is obtained by increasing all the
labels by 1. Then, an infinite path satisfies χ′ if and only if it does not satisfy χ.

2.3 Parity games

A parity game G is played over a finite game arena G = (V,E), with the edges
of G labelled by a priority function χ : E −! {0, 1, 2, · · · , d}. A play ρ in the
arena of G is winning for Eve if and only if ρ satisfies the χ-parity condition.
Following the breakthrough of Calude, Jain, Khoussainov, Li, and Stephan, it is
well-known that the winner of a parity game can be found in quasi-polynomial
time: nO(log d) for an n-vertex parity game with priority in [d] [11,28,32,21].

2.4 Muller conditions and Zielonka trees

A (C,F)-Muller conditions consists of a finite set of colours C, and a set F
consisting of subsets of C. An infinite sequence in Cω satisfies the (C,F)-Muller
condition if the set of colours seen infinitely often along the sequence is in F .

A Muller game G consists of an arena G = (V,E), a colouring function
π : E −! C and a Muller condition (C,F). An infinite play ρ in G is winning
for Eve if the set of colours seen infinitely often along the play is in F , and Eve
wins the Muller game G if she has a winning strategy.

Every Muller game can be converted to an equivalent parity game, as shown
by Gurevich and Harrington [23]. We will use the conversion of Dziembowski,
Jurdziński, and Walukiewikz that involve Zielonka trees [17,12], which we define
below.

Definition 1 (Zielonka tree). Given a Muller condition (C,F), the Zielonka
tree of a Muller condition, denoted ZC,F , is a tree whose nodes are labelled by
subsets of C, and is defined inductively. The root of the tree is labelled by C.
For a node that is already constructed and labelled with the set X, its children
are nodes labelled by distinct maximal non-empty subsets X ′ ⊊ X such that
X ∈ F ⇔ X ′ /∈ F . If there are no such X ′, then the node labelled X is a leaf of
ZC,F and has no attached children.

Given a (C,F)-Muller condition, consider the language L ⊆ Cω consisting of
words w that satisfy the (C,F)-Muller condition. The language L is then said
to be the language of the (C,F)-Muller condition, and can be recognised by a
deterministic parity automaton, whose size depends on the size of the Zielonka
tree [12].



Checking History-Determinism is NP-hard for Parity Automata 5

Lemma 2 ([12]). Let (C,F) be a Muller condition with the Zielonka tree ZC,F
that has n leaves and height h. Then there is a deterministic parity automaton
DC,F that can be constructed in polynomial time such that DC,F has n states and
(h+ 1) priorities, and accepts the language of the the (C,F)-Muller condition.

Consider a Muller game G on the arena G = (V,E) with the colouring func-
tion π : E −! C and the Muller condition (C,F). We can then construct an
equivalent parity game G′ by taking the product of G with the automaton DC,F
from Lemma 2. In more details, the set of vertices V ′ of G′ consists of vertices
of the form v′ = (v, q), where v is a vertex in G and q is a state in DC,F . The
owner of the vertex (v, q) is the owner of the vertex v, and the initial vertex is
(ι, q0), where ι is the initial vertex in G and q0 is the initial state in DC,F . We
have the edge e′ = (v, q) −! (v′, q′) in G′ if e = v −! v′ is an edge in G with the
colour π(e) = c, and δ = q

c
−! q′ is a transition in DC,F . The edge e′ is assigned

the priority Ω(δ) in G′, where Ω is the priority function of the automaton DC,F .
The game G′ then is such that Eve wins G if and only if Eve wins G′.

Lemma 3. Let G be a Muller game on an arena consisting of m vertices with
a Muller condition (C,F) whose Zielonka tree ZC,F has n leaves and height h.
Then, G can be converted to an equivalent parity game G′ which has mn many
vertices and h+ 1 priorities.

2.5 2-dimensional parity game

Multi-dimensional parity games were introduced by Chatterjee, Henzinger and
Piterman, where they called it generalised parity games [13]. For our purposes,
it suffices to consider 2-dimensional (2-D) parity games, which is what we define
now.

A 2-dimensional parity game G is similar to a parity game, but we now have
two priority functions π1 : E −! [0, d1] and π2 : E −! [0, d2] on E. Any infinite
play in the game is winning for Eve if the following holds: if the play satisfies
π1, then it satisfies π2.
We say that Adam wins the game otherwise. We call the problem of deciding
whether Eve wins a 2-D parity game as 2-D parity game.

2-D parity game: Given a 2-D parity game G, does Eve win G?

If Eve has a strategy to win a 2-D parity game, then Eve has a positional winning
strategy to do so, i.e. she can win by always choosing the same edge from each
vertex in V∃∃∃, which is given by a function σ : V∃∃∃ −! E. This can be inferred
directly from seeing the 2-D parity game as a Rabin game, which are known to
have positional strategies for Eve [18]. Furthermore, given a positional strategy
σ for Eve in a 2-D parity game (or a Rabin game), one can check in polynomial
time if σ is a winning strategy [18]. This gives us a nondeterministic polynomial
time procedure to decide if Eve wins a given 2-D parity game. In 1988, Emerson
and Jutla established NP-hardness for Rabin games [19], and their proof was
extended by Chatterjee, Henzinger and Piterman in 2007 to show NP-hardness
for 2-D parity games as well [13].



6 Aditya Prakash

Theorem 4 ([13]). The problem of deciding whether Eve wins a given 2-D
parity game is NP-complete.

Remark 5. Chatterjee, Henzinger and Piterman give a slightly different and a
more natural definition of 2-D parity games[13], where the winning condition for
Eve requires every play to satisfy either of two given parity conditions. It is easy
to see, however, that both definitions are log-space inter-reducible to each other,
by dualising the first parity condition. Our definition, although less natural,
makes the connection to simulation games and our reductions in Sections 3
and 4 more transparent.

2.6 Parity automata

A nondeterministic parity automaton A = (Q,Σ, q0, ∆,Ω) contains a finite di-
rected graph with edges labelled by letters in Σ. These edges are called transi-
tions, which are elements of the set ∆ ⊆ Q × Σ × Q, and the vertices of this
graph are called states, which are elements of the set Q.

Each automaton has a designated initial state q0 ∈ Q, and a priority function
Ω : ∆ −! [i, j] which assigns each transition a priority in [i, j], for i < j two
natural numbers. We say that (j− i+1) is the number of priorities or the parity
index of A. For states p, q and an alphabet a ∈ Σ, we use p

a:c
−−! q to denote a

transition from p to q on the letter a that has the priority c.
A run on an infinite word w in Σω is an infinite path in the automaton,

starting at the initial state and following transitions that correspond to the
letters of w in sequence. We say that such a run is accepting if it satisfies the
Ω-parity condition, and a word w in Σω is accepting if the automaton has an
accepting run on w. The language of an automaton A, denoted by L(A), is the
set of words that it accepts. We say that the automaton A recognises a language
L if L(A) = L. A parity automaton A is said to be deterministic if for any given
state in A and any given letter in Σ, there is at most one transition from the
given state on the given letter. A Büchi (resp. co-Büchi) automaton is a parity
automaton with priorities in [1, 2] (resp. [0, 1]).

2.7 Simulation

We say a parity automaton A simulates another parity automaton B if for any
(finite or infinite) run on B, there is a corresponding run on A on the same word
that can be constructed on-the-fly such that if the run in B is accepting, so is the
corresponding run in A. This is made more formal by the following simulation
game.

Definition 6 (Simulation game). Given nondeterministic parity automata
A = (Q,Σ, q0, ∆A, ΩA) and B = (P,Σ, p0, ∆B , ΩB), the simulation game be-
tween A and B, denoted Sim(A,B), is defined as a two player game between
Adam and Eve as follows, with positions in P × Q. A play of the simulation
game starts at the position (p0, q0), and has ω many rounds. For each i ∈ N, the
(i+ 1)th round starts at a position (pi, qi) ∈ P ×Q, and proceeds as follows:



Checking History-Determinism is NP-hard for Parity Automata 7

– Adam selects a letter a ∈ Σ, and a transition pi
a
−! pi+1 in B.

– Eve selects a transition qi
a
−! qi+1 on the same letter in A.

The new position is (pi+1, qi+1), for another round of the play.
The player Eve wins the above play if either her constructed run in A is

accepting, or Adam’s constructed run in B is rejecting. If Eve has a winning
strategy in Sim(A,B), then we say that A simulates B, and denote it by B ≲ A.

We call the problem of checking whether a parity automaton simulates another
as Simulation:

Simulation: Given two parity automata A and B, does A simulate B?

The simulation game Sim(A,B) can naturally be seen as a 2-D parity game,
where the arena is the product of two automata with Adam selecting letters and
transitions in A and Eve transitions in B, and the priority functions χ1 and χ2

based on corresponding priorities of transitions in A and B respectively. Since
2-D parity game can be solved in NP, Simulation can be solved in NP as
well.

2.8 History-determinism

A history-deterministic (HD) parity automaton is a nondeterministic parity au-
tomaton in which the nondeterminism can be resolved ‘on-the-fly’ just based
on the prefix read so far, without knowing the rest of the word. The history-
determinism of a parity automaton can be characterised by the letter game,
which is a 2-player turn-based game between Adam and Eve, who take alternat-
ing turns to select a letter and a transition in the automaton (on that letter),
respectively. After the game ends, the sequence of Adam’s choices of letters is
an infinite word, and the sequence of Eve’s choices of transitions is a run on that
word. Eve wins the game if her run is accepting or Adam’s word is rejecting, and
we say that an automaton is history-deterministic if Eve has a winning strategy
in the history-determinism game.

Definition 7 (Letter game). Given a parity automaton A = (Q,Σ, q0, ∆,Ω),
the letter game of A is defined between the two players ∀∀∀ and ∃∃∃ as follows, with
positions in Q×Σ∗. The game starts at (q0, ε) and proceeds in ω many rounds.
For each i ∈ N, the (i + 1)th round starts at a position (qi, wi) ∈ Q × Σi, and
proceeds as follows:

– ∀∀∀ selects a letter ai ∈ Σ
– ∃∃∃ selects a transition qi

ai−! qi+1 ∈ ∆

The new position is (qi+1, wi+1), where wi+1 = wiai.
Thus, the play of a letter game can be seen as Adam constructing a word

letter-by-letter, and Eve constructing a run transition-by-transition on the same
word. Eve wins such a play if the following holds: if Adam’s word is in L(A),
then Eve’s run is accepting.



8 Aditya Prakash

The automaton A is said to be history-deterministic if Eve has a winning strategy
on the letter game of A. We are interested in the problem of checking whether
a given parity automaton is history-deterministic, which we shall denote by
History-deterministic.

History-deterministic: Given a parity automaton A, is A history-
deterministic?

2.9 Token games

Token games, or k-token games, is defined on an automaton and is similar to
letter games, where Adam is constructing a word letter-by-letter, Eve is con-
structing a run transition-by-transition on the same word over ω many rounds,
and additionally, Adam is constructing k runs transition-by-transition on this
word as well. The winning objective of Eve requires her to construct an accepting
run if one of k Adam’s runs is accepting.

Definition 8 (k-token game). Given a nondeterministic parity automaton
A = (Q,Σ, , q0, ∆,Ω), the k-token game of A is defined between the two players
Adam and Eve as follows, with positions in Q×Qk. The game starts at (q0, (q0)k)
and proceeds in ω many rounds. For each i ∈ N, the (i + 1)th round starts at a
position (qi, (p

1
i , p

2
i , · · · , pki )) ∈ Q×Qk, and proceeds as follows:

– Adam selects a letter ai ∈ Σ

– Eve selects a transition qi
ai−! qi+1 ∈ ∆

– Adam selects k transitions p1i
ai−! p1i+1, p

2
i

ai−! p2i+1, · · · pki
ai−! pki+1,

The new position is (qi+1, (p
1
i+1, p

2
i+1, · · · , pki+1)), from where the (i+2)th round

begins.
Thus, in a play of the k-token game, Eve constructs a run and Adam k runs,

all on the same word. Eve wins such a play if the following holds: if one of
Adam’s k runs is accepting, then Eve’s run is accepting.

Bagnol and Kuperberg have shown that for any parity automaton A, the
2-token game of A, and the k-token game of A for any k ≥ 2, are equivalent.

Lemma 9 ([3]). Given a parity automaton A, Eve wins 2-token game of A if
and only if Eve wins the k-token game of A for all k ≥ 2.

If A is a nondeterministic Büchi or co-Büchi automaton, then Eve wins the 2-
token game of A if and only if A is history-deterministic[3,4], and it is conjectured
that this result extends to all parity automata.

Two-token conjecture: Given a nondeterministic parity automa-
ton A, Eve wins the 2-token game of A if and only if A is history-
deterministic.



Checking History-Determinism is NP-hard for Parity Automata 9

3 Simulation is NP-hard

In this section, we show that the problem of deciding if a parity automaton
simulates another is NP-hard, by giving a reduction from the problem of deciding
whether Eve wins a 2-D parity game, which was shown to be NP-complete by
Chatterjee, Henzinger and Piterman [13]. Since a simulation game can be solved
in NP (see Section 2.7), we obtain NP-completeness.

Theorem 10. Given two parity automata A and B, deciding if A simulates B
is NP-complete.

Since A simulates B if and only if Eve wins the simulation game, which is
a 2-dimensional parity game (see Section 2.7), and deciding if Eve wins a 2-D
parity game is in NP [13], we get that the problem of checking for simulation is
in NP. Hence, we show that Simulation is NP-hard in the rest of this section,
by giving a reduction from 2-D parity game.

Let G be a two-dimensional parity game played on the arena G = (V,E), with
two priority function χ1 and χ2. We recall that the winning condition for Eve
in such a game requires a play to satisfy the χ2-parity condition if the χ1-parity
condition is satisfied (see Section 2.5).

Overview of the reduction. We shall construct two parity automata H and
D such that H simulates D if and only if Eve wins G. The automata H and D are
over the alphabet E∪{$}, where $ is a letter added for padding. The automaton
D is deterministic, while the automaton H has nondeterminism on the letter $
and contains a copy of D.

Adam, by his choice of letter in Sim(H,D), captures his moves from Adam
vertices in G. Similarly, Eve, by means of choosing her transition on $ in H,
captures her moves from Eve vertices in G. After each $-round in Sim(H,D),
we require Adam to ‘replay’ Eve’s choice as the next letter. Otherwise, Eve can
take a transition to the same state as Adam (recall that H contains a copy of
D), from where she wins the play in Sim(H,D) by copying Adam’s transitions
in each round from here on-wards. The priorities of D are based on χ1, while the
priorities of H are based on χ2. This way D and H roughly accept words that
correspond to plays in G satisfying χ1 and χ2 respectively.

We first present our reduction on an example 2-D parity game whose sub-
game consists of vertices u, v, v′, w, w′ with edges between them as shown in
Fig. 1. For the Adam vertex u, we have corresponding states uD in D and uH

in H. An Adam move from u in G corresponds to one round of Sim(H,D) from
the position (uD, uH). In G, Adam chooses an outgoing edge, say e = (u, v) from
u such that χ1(u) = c1 and χ2(u) = c2. This corresponds to Adam choosing
the letter e in Sim(H,D). We then have the corresponding unique transitions
uD

e:c1−−! v$ in D and uH
e:c2−−! vH in H, and hence the simulation game goes to

(v$, vH).



10 Aditya Prakash

G: u v w

v′ w′

e : (c1, c2)

e ′
: (c

3 , c
4 )

f : (c5, c6)

f ′
: (c7 , c8)

g : (c9, c10)

D: uD v$ vD wD

v′$ v′D w′
D

e : c1

e ′
: c3

$ : 0

$ : 0

f : c5

f ′
: c7

g : c9

H: uH vH

v′H

vH , f

vH , f ′

vH , g

wH

w′
H

e : c2

e ′
: c
4

$ : 0

$ : 0

$ : 0

f : c6

f ′
: c8

g : c10

f
′ : c8

f
: c

6

Fig. 1. A snippet of a game G, and the corresponding automata D and H constructed
in the reduction. The Adam vertices are represented by pentagons and Eve vertices by
squares. The automaton D is deterministic, and H contains a copy of D.

An Eve move from v in G corresponds to two rounds of the simulation game
from (v$, vH). In Sim(H,D), Adam must select a letter $ and the unique $

transition v$
$:0
−−! vD on D, since $ is the only letter on which there is an outgoing

transition from v$. Eve must now select a transition on $ from vH . Suppose
she picks vH

$:0
−−! (vH , f) where f = (v, w) is an outgoing edge from v in G

with χ1(f) = c5 and χ2(f) = c6. This corresponds to Eve selecting the edge f
from her vertex v in G. The simulation game goes to the position (vD, (vH , f)).
From here, Adam may select any outgoing edge from v as the letter. If he picks

f ′ = (v, w′) and the transition vD
f ′:c7−−−! w′

D, then Eve can pick the transition

(vH , f)
f ′:c8−−−! w′

D and move to the same state as Adam: such transitions are



Checking History-Determinism is NP-hard for Parity Automata 11

indicated by dashed edges in Fig. 1. From here, Eve can win Sim(H,D) by
simply copying Adam’s transitions. Otherwise, Adam picks the edge f as the
letter, same as Eve’s ‘choice’ in the previous round, resulting in the transition
vD

f :c5−−! wD in D and (vH , f)
f :c6−−! wH in H, and the simulation game goes to

the position (wD, wH), from where the game continues similarly.

The reduction. We now give formal descriptions of the two parity automata
D and H such that H simulates D if and only if Eve wins G. We encourage the
reader to refer to Fig. 1 while reading the construction of the automata described
below.

Both automata D and H are over the alphabet Σ = E∪{$}. The automaton
D is given by D = (P,Σ, p0, ∆D, ΩD), where the set P consists of the following
states:

– states uD for each Adam vertex u ∈ V∀∀∀,
– states v$ and vD for each Eve vertex v ∈ V∃∃∃.

The state p0 = ιD is the initial vertex, where ι is the initial vertex of the game
G. The set ∆D consists of the following transitions with priorities as indicated:

– transitions uD
e:χ1(e)
−−−−! v$ for every edge e = (u, v) in G such that u ∈ V∀∀∀ is

an Adam-vertex in G,
– transitions v$

$:0
−−! vD for every v ∈ V∃∃∃ that is an Eve-vertex in G,

– transitions vD
f :χ1(f)
−−−−−! wD for every edge f = (v, w) in G such that v ∈ V∃∃∃

is an Eve vertex in G
The automaton H is given by H = (Q,Σ, q0, ∆H , ΩH), where the set Q

consists of the following states:

– states uH for each Adam vertex u ∈ V∀∀∀,
– states vH for each Eve vertex v ∈ V∃∃∃,
– states (vH , f) for each edge f = (v, w) in G such that v ∈ V∃∃∃ is an Eve

vertex,
– all states in P , the set of states of D.

The vertex ιH is the initial vertex. The set ∆H consists of the following transi-
tions with priorities as indicated:

– transitions uH
e:χ2(e)
−−−−! vH for every edge e = (u, v) in G such that u ∈ V∀∀∀ is

an Adam-vertex in G,
– transitions vH

$:0
−−! (vH , f) for every edge f = (v, w) in G that is outgoing

from an Eve-vertex v ∈ V∃∃∃,
– transitions (vH , f)

f :χ2(f)
−−−−−! wH for every edge f = (v, w) in G outgoing from

an Eve-vertex v ∈ V∃∃∃,
– transitions (vH , f)

f ′:χ2(f
′)

−−−−−−! w′
D for every edge f ′ = (v, w′) ̸= f in G outgoing

from an Eve-vertex v ∈ V∃∃∃,
– all transitions of D.

Note that, by construction, H contains a copy of D as a sub-automaton.



12 Aditya Prakash

Correctness of the reduction. We now show that Eve wins the simulation
game Sim(H,D) if and only if Eve wins the game G. Call any play of the
simulation game uncorrupted if the following holds: whenever Eve’s state in H
is at (vH , f) at the start of a round of Sim(H,D), Adam plays the letter f .
If Adam plays a letter f ′ ̸= f , then we call such a move corrupted. Any play
consisting of a corrupted move is called a corrupted play.

It is clear that Eve wins any play of Sim(H,D) that is corrupted, since a
corrupted move causes Eve’s state in H and Adam’s state in D to be the same
in Sim(H,D). Then, both Eve’s and Adam’s runs are identical and determined
by the choices of Adam’s letters. In particular, Eve’s run is accepting if Adam’s
run is.

Thus, it suffices to consider only uncorrupted plays. We first observe an
invariant that is preserved throughout any uncorrupted play of Sim(H,D).

Invariant: At the start of any round of the simulation game Sim(H,D)
following an uncorrupted play:
– Adam’s state is at uD for some u ∈ V∀∀∀ if and only if Eve’s state is

at uH

– Adam’s state is at v$ for some v ∈ V∃∃∃ if and only if Eve’s state is at
vH

– Adam’s state is at vD for some v ∈ V∃∃∃ if and only if Eve’s state is at
(vH , f) for some edge f that is outgoing from v.

This invariant is easy to observe from the construction, and can be shown by a
routine inductive argument.

Note that if Adam constructs the word w = e0$f0e1$f1 . . .—which we denote
by (ei$fi)i≥0 for succinctness—in an uncorrupted play of Sim(H,D), then Eve’s
run on H is uniquely determined, since the letter fi indicates how nondetermin-
ism on H was resolved by Eve on the ith occurrence of $ in Sim(H,D). Thus,
any uncorrupted play in the simulation can be thought of as Adam selecting
the ei’s and Eve selecting the fi’s, resulting in the word w = (ei$fi)i≥0 being
constructed in the simulation game. Note that then, by construction, (eifi)i≥0 is
a play in G. Conversely, if (eifi)i≥0 is a play in G, then there is an uncorrupted
play of Sim(H,D) whose word is w = (ei$fi)i≥0.

Furthermore, observe that the transitions on a letter e ∈ E in D and H
in any uncorrupted play have the priorities χ1(e) and χ2(e) respectively, while
transitions on $ have priority 0. Thus, in a uncorrupted play of Sim(H,D) whose
word is (ei$fi)i≥0, the highest priorities occurring infinitely often in the run on D
and H are the same as the highest χ1-priority and χ2-priority occurring infinitely
often in the play (eifi)i≥0 respectively.

Thus, an uncorrupted play in Sim(H,D) whose word is w = (ei$fi)i≥0 is
winning for Eve if and only if the play (eifi)i≥0 in G is winning for Eve. Since
Eve wins any corrupted play, the equivalence of the games G and Sim(H,D)
follows easily now. If Eve has a winning strategy in G, she can use her strategy
to select transitions so that the word w = (ei$fi)i≥0 that is constructed in any
uncorrupted play ρ of Sim(H,D) corresponds to a winning play for her in G,



Checking History-Determinism is NP-hard for Parity Automata 13

and hence ρ is winning in Sim(H,D). If Adam ever makes a corrupted move,
she wins trivially.

Conversely, if she has a winning strategy in Sim(H,D), then she can use her
strategy to choose moves in G so that the play (eifi)i≥0 corresponds to a winning
uncorrupted play of Sim(H,D) in which the word (ei$fi)i≥0 is constructed, thus
resulting in the play (eifi)i≥0 to also be winning for Eve.

4 Checking History-Determinism is NP-hard

In this section, we show that the problem of deciding whether a given nondeter-
ministic parity automaton is history-deterministic is NP-hard, as is the problem
of deciding whether Eve wins the 1-token game or the 2-token game of a given
parity automaton. To show this, we reduce from deciding whether Eve wins a
2-D parity game with priority functions χ1 and χ2 that satisfies the following
property: any play satisfying the χ2-parity condition also satisfies the χ1-parity
condition. We call such games as ‘good 2-D parity games’. We first show in Sec-
tion 4.1 that deciding whether Eve wins a good 2-D parity game is NP-hard,
and then use this to show NP-hardness for the problems mentioned above in
Section 4.2.

4.1 Good 2-D parity games

Definition 11 (Good 2-D parity game). A 2-D parity game G with the
priority functions χ1 and χ2 is called good if any play in G that satisfies χ2 also
satisfies χ1.

We call the problem of deciding whether Eve wins a 2-D parity game as good
2-D parity game. Chatterjee, Henzinger and Piterman’s reduction from SAT
to 2-D parity game [13] can also be seen as a reduction to Good 2-D parity
game, as we show below.

Lemma 12. Deciding whether Eve wins a good 2-D parity game is NP-hard.

Proof. We reduce from the problem of SAT [16]. Let ϕ be a Boolean formula
over the variables X = {x1, x2, · · · , xM} that is a disjunction of terms ti for
each i ∈ [1, N ], where each term ti is a finite conjunction of literals—elements
of the set L = {x1, x2, · · · , xM ,¬x1,¬x2, · · · ,¬xM}. We shall construct a good
2-D parity game Gϕ such that Eve wins Gϕ if and only if ϕ has a satisfying
assignment.

Let T = {t1, t2, · · · , tN} be the set of all terms in ϕ. The game Gϕ has the
set T ∪ L as its set of vertices. The elements of L are Adam vertices, while the
elements of T are Eve vertices. We set the element x1 in L to be the initial
vertex. Each Adam vertex l in L has an outgoing edge e = (l, t) to every term t
in T , and every Eve vertex t ∈ T has an outgoing edge f = (t, l) to a literal l if
l is a literal in t. Thus, each play in the game Gϕ can be seen as Adam and Eve
choosing a term and a literal in that term in alternation respectively.



14 Aditya Prakash

The game Gϕ has priority functions χ1 and χ2. To every edge e = (l, t) that
is outgoing from an Adam vertex, both priority functions χ1 and χ2 assign e the
priority 0, i.e., χ1(e) = χ2(e) = 0. Every edge e = (t, l) that is outgoing from an
Eve vertex is assigned priorities as follows:

χ1(e) =

{
2j + 2 if l = xj

2j + 1 if l = ¬xj

χ2(e) =

{
2j if l = xj

2j + 1 if l = ¬xj

This concludes our description of the game Gϕ. We now show that Gϕ is a
good 2-D parity game, which Eve wins if and only if ϕ is satisfiable.

Gϕ is a good 2-D parity game. Let ρ be a play in Gϕ that satisfies the χ2

parity condition. If 2c is the largest χ2-priority occurring infinitely often in ρ,
then by construction, 2c + 2 is the largest χ1-priority occurring infinitely often
in the ρ, which is also even. Thus, ρ satisfies the χ1 parity condition.

If ϕ is satisfiable, then Eve wins Gϕ. Let f : {x1, x2, · · · , xM} −! {⊤,⊥}
be a satisfying assignment of ϕ. Let σ be a function which assigns, to each term
ti, a literal l ∈ ti that is assigned ⊤ in f . Consider the Eve-strategy σ∃∃∃ in Gϕ

defined by σ∃∃∃(t) = (t, σ(l)). We claim that σ∃∃∃ is a winning strategy. Indeed, let
ρ be a play in Gϕ following σ∃∃∃, and consider the largest i such that xi or ¬xi

appear infinitely often in ρ. Since σ∃∃∃ is obtained from a satisfying assignment, we
know that either only xi appears infinitely often, or only ¬xi appears infinitely
often. In the former case, the highest χ2 priority appearing infinitely often is 2i,
which is even, and hence ρ is winning for Eve. In the latter case, the highest χ1

priority appearing infinitely often is 2i+1, which is odd, and hence the χ1-parity
condition is not satisfied, implying ρ is winning for Eve.

If Eve wins Gϕ, then ϕ is satisfiable. If Eve wins Gϕ, then we know she can
win using a positional strategy. Let σ∃∃∃ : T −! L be such a strategy, where Eve
chooses the edge (t, σ∃∃∃(t)) at a vertex t. If there are no two terms t, t′ such that
σ∃∃∃(t) = xi and σ∃∃∃(t

′) = ¬xi for some xi, then we are done since then σ∃∃∃ can
naturally be extended to a satisfying assignment for ϕ. Otherwise, we claim that
Adam wins the game Gϕ: Adam can alternate between picking t and t′, and then
the highest χ1 priority appearing infinitely often is 2i+ 2, while the highest χ2

priority appearing infinitely often is 2i+1. This implies that the play is winning
for Adam, which is a contradiction since σ∃∃∃ is a winning strategy for Eve.

4.2 NP-hardness of checking history-determinism

We now show that deciding the history-determinism, whether Eve wins the 1-
token game, and whether Eve wins the 2-token game of a given parity automaton



Checking History-Determinism is NP-hard for Parity Automata 15

is NP-hard (Theorem 14). Much of the work towards this has already been done
in the reduction from 2-D parity game to Simulation given in Section 3. We
show that the automaton H that is constructed when using this reduction from
a good 2-D parity game G is such that Eve wins G if and only if H is history-
deterministic. Since Good 2-D parity game is NP-hard (Lemma 12), we get
that History-deterministic is NP-hard as well.

Lemma 13. Checking whether a given nondeterministic parity automaton is
history-deterministic is NP-hard.

Proof. Let us consider a good 2-D parity game G. Recall the construction of the
automata H and D in Section 3, which is such that Eve wins G if and only if H
simulates D. We will show that if G is a good 2-D parity game, then the following
statements are equivalent.

1. Eve wins G.
2. H simulates D.
3. H is history-deterministic.

The equivalence of 1 and 3 would then conclude the proof. The equivalence of 1
and 2 has already been shown in the proof of Theorem 10, and we now focus on
showing that 2 and 3 are equivalent.

Towards this, let Σ = E ∪ {$}, and consider the languages Lj over Σ con-
sisting of the words (ei$fi)i≥0 such that (eifi)i≥0 is a play in G that satisfies
χj , for j = 1, 2. By construction, we know L(D) = L1, and L(H) = L1 ∪ L2.
Furthermore, since G is good, we know that L1 ⊇ L2 and hence L(D) = L(H).
Observe that by construction, D is deterministic.

If H is history-deterministic, then since L(D) = L(H), Eve wins the simula-
tion game between H and D: she can use her strategy in the letter game of H
to play in Sim(H,D), ignoring Adam’s transitions in D.

Conversely, if H simulates D, then she can use her winning strategy in
Sim(H,D) to win the letter game of H as follows. Eve, during the letter game
of H, will keep in her memory, a play of the game Sim(H,D). On each round
in the letter game of H, Adam gives a letter, and Eve, in the game Sim(H,D),
lets Adam pick the same letter and the unique transition on that letter in D.
She then uses her strategy in Sim(H,D) to pick a transition in H, and she plays
the same transition in the letter game of H. We claim that any resulting play of
the letter game of H if Eve plays as above is winning for Eve. Indeed, if Adam
constructs an accepting word in H, then it is accepting in D as well. Hence, since
D is deterministic, Adam’s run on D in the simulation game between H and D
that is stored in Eve’s memory is accepting. Since Eve is playing according to a
winning strategy in Sim(H,D), Eve’s run in H, which is the same in Sim(H,D)
and the letter game of H, is accepting as well. Hence, Eve wins the letter game
of H, and thus H is history-deterministic.

We also argue in the appendix that the automaton H in proof of Lemma 13
above is such that Eve wins the 1-token game of H if and only if Eve wins the



16 Aditya Prakash

2-token game of H if and only if H is history-deterministic. This gives us that
checking whether Eve wins the 1-token game or the 2-token game of a parity
automaton is NP-hard. Since 1-token games can naturally be seen as a 2-D
parity game, we get that deciding whether Eve wins the 1-token game of a given
parity automaton is in NP, and hence the problem is NP-complete.

Theorem 14. The following problems are NP-hard:

1. Given a parity automaton A, is A history-deterministic?
2. Given a parity automaton A, does Eve win the 2-token game of A?

Additionally, the following problem is NP-complete: Given a parity automaton
A, does Eve win the 1-token game of A?

5 Language Containment

In this section, we consider the following problem:

HD-automaton containment: Given two parity automata A and B
such that B is history-deterministic, is L(A) ⊆ L(B)?

While the problem of checking language inclusion between two non-deterministic
parity automata is PSPACE-complete (regardless of whether the parity in-
dex is fixed or not) [31,1], the same for deterministic parity automata is NL-
complete [37, Theorem 1]. For history-deterministic parity automata with fixed
parity indices, however, the problem of language inclusion reduces to checking
for simulation (Lemma 15), which can be solved in polynomial time when the
parity indices are fixed [13].

Lemma 15 ([38,9]). Given a nondeterministic parity automaton A and a
history-deterministic parity automaton B, the following are equivalent:

1. B simulates A
2. L(A) ⊆ L(B)

Proof. (1) ⇒ (2): Fix σ∃∃∃ to be a winning strategy for Eve in Sim(B,A). Let w
be a word accepted by A via an accepting run ρ. Consider a play of Sim(B,A)
where Adam constructs the run ρ on the word w, and Eve plays according to
σ∃∃∃. Then, the run in B that Eve constructs must be accepting, and hence w is
accepted by B.

(2) ⇒ (1): Let σB be a winning strategy for Eve in the letter game of B.
Consider the strategy for Eve in Sim(B,A) where Eve chooses the transitions
on B according to σB , ignoring Adam’s transitions in A. If Adam constructs an
accepting run in A on a word w in Sim(B,A), then w ∈ L(A) ⊆ L(B). Hence
σB would have constructed an accepting run in B in Sim(B,A). It follows that
Eve wins Sim(B,A), and hence B simulates A.



Checking History-Determinism is NP-hard for Parity Automata 17

Corollary 16. Given a nondeterministic parity automaton A and a history-
deterministic parity automaton B such that both A and B have priorities in [d]
for a fixed d, the problem of whether L(A) ⊆ L(B) can be decided in polynomial
time.

We now focus on the problem HD-automaton containment when the
parity index is not fixed. From Lemma 15, we know that this can be reduced to
Simulation. Since Simulation is in NP [13], we get an immediate NP-upper
bound for HD-automaton containment [38, Lemma 3]. We show that we can
do better, in quasi-polynomial time, by giving a polynomial time reduction to
finding the winner in a parity game[11,28].

Towards this, let us fix a nondeterministic parity automaton A and a history-
deterministic parity automaton B over the alphabet Σ throughout the rest of
this section, for which we want to decide if L(A) ⊆ L(B). Suppose that A has
n1 states and priorities in [d1], and B has n2 states and priorities in [d2].

It is well known that every such parity automaton A can be converted effi-
ciently to a language-equivalent nondeterministic Büchi automaton A′ that has
at most (n1 · d1) states [14,39]. Then, from Lemma 15, it suffices to check if Eve
wins the game Sim(B,A′). Note that Sim(B,A′) is a 2-D parity game G with
(n1 · d1 · n2 · |Σ|)-many vertices that has the priority functions χ1 : V −! [1, 2]
and χ2 : V −! [d2], where V is the set of vertices of G.

The game G can be viewed equivalently as a Muller game with the condition
(C,F), where C = [1, 2]×[d2] and F consists of sets F ⊆ C such that if max(F |1)
is even, then max(F |2) is even. Here, F |i for i ∈ {1, 2} indicates the projection
of F onto the ith component. Call the Zielonka tree (Definition 1) of this Muller
condition as Zd2

. We shall show that the size of Zd2
is polynomial in d2.

Lemma 17. The Zielonka tree Zd2
has (⌈d2

2 ⌉) many leaves and its height is d2.

The proof of the lemma, obtained via an inductive argument, is given in the
appendix. Lemma 17 allows us to use Lemma 3 on Sim(B,A′) to obtain an
equivalent Parity game G′ with (n1 · d1 · n2 · |Σ| · ⌈d2

2 ⌉) vertices which has d2 +1
priorities, such that Eve wins Sim(B,A′) if and only if Eve wins G′.

Lemma 18. Given a nondeterministic parity automaton A with n1 states and
a history-deterministic parity automaton B with n2 states whose priorities are
in [d2] that are both over the alphabet Σ, the problem of deciding whether L(A)
is contained in L(B) can be reduced in polynomial time to finding the winner of
a parity game G which has (n1 · d1 · n2 · |Σ| · ⌈d2

2 ⌉) many vertices and d2 + 1
priorities.

Since parity games can be solved in quasi-polynomial time[11,28], Lemma 18
implies that the problem of language containment in a history-deterministic
automaton can be solved in quasi-polynomial time as well.

Theorem 19. Given a nondeterministic parity automaton A with n1 states and
priorities in [d1], and a history-deterministic parity automaton B with n2 states



18 Aditya Prakash

whose priorities are in [d2], checking whether the language of A is contained in
the language of B can be done in time

(n1 · d1 · n2 · d2 · |Σ|)O(log d2).

6 Discussion

We have shown NP-hardness for the problem of checking for simulation be-
tween two parity automata (when their parity indices are not fixed). We have
also established upper and lower bounds of several decision problems relating
to history-deterministic parity automata. The most significant amongst these,
in our view, is the NP-hardness for the problem of deciding if a given parity
automaton is history-deterministic, which is an improvement from the previous
lower bound of solving a parity game [29].

There still remains a significant gap between the lower bound of NP-hardness
and upper bound of EXPTIME for checking history-determinism, however.
Furthermore, note that even if one shows the two-token conjecture [3,4], this
would only imply a PSPACE-upper bound (when the parity index is not fixed),
since 2-token games can be seen as Emerson-Lei games [26]. Thus, a natural
direction for future research is to try to show that the problem of checking for
history-determinism is PSPACE-hard.

On the other hand, however, it is also plausible that checking whether Eve
wins the 2-token game of a given parity automaton can be done in NP. A proof
for this might show that if Eve wins a 2-token game, then she has a strategy
that can be represented and verified polynomially. Such an approach, which
would involve understanding the strategies for the players in the 2-token games
better, could also yield crucial insights for proving or disproving the two-token
conjecture (see Section 2.9).

Boker and Lehtinen showed in their recent survey that for a ‘natural’ class of
automata T , checking history-determinism for T -automata is at least as hard as
solving T -games [8]. Interestingly, the problem of checking history-determinism
over T -automata also has the matching upper bound of solving T -games for
all classes of automata T over finite words, and over infinite words with safety
and reachability objectives on which the notion of history-determinism has been
studied so far [7,22,36,9,20]. Our result of the problem of checking history-
determinism being NP-hard for parity automata deviates from this trend (unless
parity games are NP-hard, which would have the drastic and unlikely conse-
quence of NP = NP ∩ coNP), and demonstrates the additional intricacy that
parity conditions bring.

Acknowledgements We thank Marcin Jurdziński, Neha Rino and K. S. The-
jaswini for their support and suggesting numerous improvements to the paper.
Additionally, we are grateful to K. S. Thejaswini for several insightful discussions
and pointing out a flaw in an earlier proof of Theorem 10.



Checking History-Determinism is NP-hard for Parity Automata 19

References

1. Abdulla, P.A., Chen, Y., Clemente, L., Holík, L., Hong, C., Mayr, R., Voj-
nar, T.: Advanced ramsey-based büchi automata inclusion testing. In: Katoen,
J., König, B. (eds.) CONCUR 2011 - Concurrency Theory - 22nd International
Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceed-
ings. Lecture Notes in Computer Science, vol. 6901, pp. 187–202. Springer (2011).
https://doi.org/10.1007/978-3-642-23217-6_13, https://doi.org/10.1007/
978-3-642-23217-6_13

2. Abu Radi, B., Kupferman, O.: Minimization and canonization of GFG transition-
based automata. Log. Methods Comput. Sci. 18(3) (2022). https://doi.org/10.
46298/lmcs-18(3:16)2022, https://doi.org/10.46298/lmcs-18(3:16)2022

3. Bagnol, M., Kuperberg, D.: Büchi good-for-games automata are efficiently rec-
ognizable. In: Ganguly, S., Pandya, P.K. (eds.) 38th IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2018, December 11-13, 2018, Ahmedabad, India. LIPIcs, vol. 122, pp.
16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://
doi.org/10.4230/LIPIcs.FSTTCS.2018.16, https://doi.org/10.4230/LIPIcs.
FSTTCS.2018.16

4. Boker, U., Kuperberg, D., Lehtinen, K., Skrzypczak, M.: On the succinctness
of alternating parity good-for-games automata. CoRR abs/2009.14437 (2020),
https://arxiv.org/abs/2009.14437

5. Boker, U., Kupferman, O., Skrzypczak, M.: How deterministic are good-for-
games automata? In: Lokam, S.V., Ramanujam, R. (eds.) 37th IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2017, December 11-15, 2017, Kanpur, India. LIPIcs,
vol. 93, pp. 18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017). https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18, https://doi.org/
10.4230/LIPIcs.FSTTCS.2017.18

6. Boker, U., Lehtinen, K.: History determinism vs. good for gameness in quan-
titative automata. In: Bojanczyk, M., Chekuri, C. (eds.) 41st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference. LIPIcs,
vol. 213, pp. 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2021). https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38, https://doi.org/
10.4230/LIPIcs.FSTTCS.2021.38

7. Boker, U., Lehtinen, K.: Token games and history-deterministic quantitative au-
tomata. In: Bouyer, P., Schröder, L. (eds.) Foundations of Software Science and
Computation Structures - 25th International Conference, FOSSACS 2022, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings. Lecture Notes in
Computer Science, vol. 13242, pp. 120–139. Springer (2022). https://doi.org/10.
1007/978-3-030-99253-8_7, https://doi.org/10.1007/978-3-030-99253-8_7

8. Boker, U., Lehtinen, K.: When a little nondeterminism goes a long way:
An introduction to history-determinism. ACM SIGLOG News 10(1), 24–
51 (2023). https://doi.org/10.1145/3584676.3584682, https://doi.org/10.
1145/3584676.3584682

9. Bose, S., Henzinger, T.A., Lehtinen, K., Schewe, S., Totzke, P.: History-
deterministic timed automata. CoRR abs/2304.03183 (2023). https://doi.org/
10.48550/arXiv.2304.03183, https://doi.org/10.48550/arXiv.2304.03183

https://doi.org/10.1007/978-3-642-23217-6\_13
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://arxiv.org/abs/2009.14437
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1007/978-3-030-99253-8\_7
https://doi.org/10.1007/978-3-030-99253-8_7
https://doi.org/10.1007/978-3-030-99253-8\_7
https://doi.org/10.1007/978-3-030-99253-8_7
https://doi.org/10.1007/978-3-030-99253-8_7
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.48550/arXiv.2304.03183
https://doi.org/10.48550/arXiv.2304.03183
https://doi.org/10.48550/arXiv.2304.03183
https://doi.org/10.48550/arXiv.2304.03183
https://doi.org/10.48550/arXiv.2304.03183


20 Aditya Prakash

10. Bose, S., Purser, D., Totzke, P.: History-deterministic vector addition systems.
In: Pérez, G.A., Raskin, J. (eds.) 34th International Conference on Concur-
rency Theory, CONCUR 2023, September 18-23, 2023, Antwerp, Belgium. LIPIcs,
vol. 279, pp. 18:1–18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPIcs.CONCUR.2023.18, https://doi.org/
10.4230/LIPIcs.CONCUR.2023.18

11. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasi-polynomial time. SIAM J. Comput. 51(2), 17–152 (2022). https://doi.
org/10.1137/17m1145288, https://doi.org/10.1137/17m1145288

12. Casares, A., Colcombet, T., Fijalkow, N.: Optimal transformations of games
and automata using muller conditions. In: Bansal, N., Merelli, E., Worrell, J.
(eds.) 48th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference).
LIPIcs, vol. 198, pp. 123:1–123:14. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.123, https://doi.
org/10.4230/LIPIcs.ICALP.2021.123

13. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl,
H. (ed.) Foundations of Software Science and Computational Structures, 10th
International Conference, FOSSACS 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2007, Braga, Portugal,
March 24-April 1, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4423,
pp. 153–167. Springer (2007). https://doi.org/10.1007/978-3-540-71389-0_
12, https://doi.org/10.1007/978-3-540-71389-0_12

14. Choueka, Y.: Theories of automata on omega-tapes: A simplified approach. J. Com-
put. Syst. Sci. 8(2), 117–141 (1974). https://doi.org/10.1016/S0022-0000(74)
80051-6, https://doi.org/10.1016/S0022-0000(74)80051-6

15. Colcombet, T.: The theory of stabilisation monoids and regular cost functions.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas,
W. (eds.) Automata, Languages and Programming, 36th Internatilonal Collo-
quium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 5556, pp. 139–150. Springer (2009).
https://doi.org/10.1007/978-3-642-02930-1_12, https://doi.org/10.1007/
978-3-642-02930-1_12

16. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A.,
Banerji, R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Symposium
on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA. pp. 151–158.
ACM (1971). https://doi.org/10.1145/800157.805047, https://doi.org/10.
1145/800157.805047

17. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed
to win infinite games? In: Proceedings, 12th Annual IEEE Symposium on Logic
in Computer Science, Warsaw, Poland, June 29 - July 2, 1997. pp. 99–110. IEEE
Computer Society (1997). https://doi.org/10.1109/LICS.1997.614939, https:
//doi.org/10.1109/LICS.1997.614939

18. Emerson, E.A.: Automata, tableaux and temporal logics (extended abstract). In:
Parikh, R. (ed.) Logics of Programs, Conference, Brooklyn College, New York, NY,
USA, June 17-19, 1985, Proceedings. Lecture Notes in Computer Science, vol. 193,
pp. 79–88. Springer (1985). https://doi.org/10.1007/3-540-15648-8_7, https:
//doi.org/10.1007/3-540-15648-8_7

https://doi.org/10.4230/LIPIcs.CONCUR.2023.18
https://doi.org/10.4230/LIPIcs.CONCUR.2023.18
https://doi.org/10.4230/LIPIcs.CONCUR.2023.18
https://doi.org/10.4230/LIPIcs.CONCUR.2023.18
https://doi.org/10.1137/17m1145288
https://doi.org/10.1137/17m1145288
https://doi.org/10.1137/17m1145288
https://doi.org/10.1137/17m1145288
https://doi.org/10.1137/17m1145288
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.1007/978-3-540-71389-0\_12
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.1007/978-3-540-71389-0\_12
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1007/978-3-642-02930-1\_12
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/3-540-15648-8\_7
https://doi.org/10.1007/3-540-15648-8_7
https://doi.org/10.1007/3-540-15648-8_7
https://doi.org/10.1007/3-540-15648-8_7


Checking History-Determinism is NP-hard for Parity Automata 21

19. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. SIAM J. Comput. 29(1), 132–158 (1999). https://doi.org/10.1137/
S0097539793304741, https://doi.org/10.1137/S0097539793304741

20. Erlich, E., Guha, S., Jecker, I., Lehtinen, K., Zimmermann, M.: History-
deterministic parikh automata. In: Pérez, G.A., Raskin, J. (eds.) 34th Interna-
tional Conference on Concurrency Theory, CONCUR 2023, September 18-23, 2023,
Antwerp, Belgium. LIPIcs, vol. 279, pp. 31:1–31:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2023). https://doi.org/10.4230/LIPIcs.CONCUR.2023.
31, https://doi.org/10.4230/LIPIcs.CONCUR.2023.31

21. Fearnley, J., Jain, S., de Keijzer, B., Schewe, S., Stephan, F., Wojtczak,
D.: An ordered approach to solving parity games in quasi-polynomial time
and quasi-linear space. Int. J. Softw. Tools Technol. Transf. 21(3), 325–349
(2019). https://doi.org/10.1007/s10009-019-00509-3, https://doi.org/10.
1007/s10009-019-00509-3

22. Guha, S., Jecker, I., Lehtinen, K., Zimmermann, M.: A bit of nondeterminism
makes pushdown automata expressive and succinct. In: Bonchi, F., Puglisi, S.J.
(eds.) 46th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia. LIPIcs, vol. 202, pp.
53:1–53:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https:
//doi.org/10.4230/LIPIcs.MFCS.2021.53, https://doi.org/10.4230/LIPIcs.
MFCS.2021.53

23. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Lewis, H.R., Simons,
B.B., Burkhard, W.A., Landweber, L.H. (eds.) Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, Cali-
fornia, USA. pp. 60–65. ACM (1982). https://doi.org/10.1145/800070.802177,
https://doi.org/10.1145/800070.802177

24. Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Inf. Comput.
173(1), 64–81 (2002). https://doi.org/10.1006/inco.2001.3085, https://doi.
org/10.1006/inco.2001.3085

25. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik,
Z. (ed.) Computer Science Logic, 20th International Workshop, CSL 2006,
15th Annual Conference of the EACSL, Szeged, Hungary, September 25-29,
2006, Proceedings. Lecture Notes in Computer Science, vol. 4207, pp. 395–410.
Springer (2006). https://doi.org/10.1007/11874683_26, https://doi.org/10.
1007/11874683_26

26. Hunter, P., Dawar, A.: Complexity bounds for regular games. In: Jedrzejowicz, J.,
Szepietowski, A. (eds.) Mathematical Foundations of Computer Science 2005, 30th
International Symposium, MFCS 2005, Gdansk, Poland, August 29 - September
2, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3618, pp. 495–506.
Springer (2005). https://doi.org/10.1007/11549345_43, https://doi.org/10.
1007/11549345_43

27. Jurdzinski, M.: Deciding the winner in parity games is in UP \cap co-up. Inf.
Process. Lett. 68(3), 119–124 (1998). https://doi.org/10.1016/S0020-0190(98)
00150-1, https://doi.org/10.1016/S0020-0190(98)00150-1

28. Jurdzinski, M., Lazic, R.: Succinct progress measures for solving parity games.
In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2017, Reykjavik, Iceland, June 20-23, 2017. pp. 1–9. IEEE Computer Soci-
ety (2017). https://doi.org/10.1109/LICS.2017.8005092, https://doi.org/
10.1109/LICS.2017.8005092

https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.4230/LIPIcs.CONCUR.2023.31
https://doi.org/10.4230/LIPIcs.CONCUR.2023.31
https://doi.org/10.4230/LIPIcs.CONCUR.2023.31
https://doi.org/10.4230/LIPIcs.CONCUR.2023.31
https://doi.org/10.4230/LIPIcs.CONCUR.2023.31
https://doi.org/10.1007/s10009-019-00509-3
https://doi.org/10.1007/s10009-019-00509-3
https://doi.org/10.1007/s10009-019-00509-3
https://doi.org/10.1007/s10009-019-00509-3
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.1145/800070.802177
https://doi.org/10.1145/800070.802177
https://doi.org/10.1145/800070.802177
https://doi.org/10.1006/inco.2001.3085
https://doi.org/10.1006/inco.2001.3085
https://doi.org/10.1006/inco.2001.3085
https://doi.org/10.1006/inco.2001.3085
https://doi.org/10.1007/11874683\_26
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/11549345\_43
https://doi.org/10.1007/11549345_43
https://doi.org/10.1007/11549345_43
https://doi.org/10.1007/11549345_43
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1109/LICS.2017.8005092


22 Aditya Prakash

29. Kuperberg, D., Skrzypczak, M.: On determinisation of good-for-games automata.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) Au-
tomata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 9135, pp. 299–310. Springer (2015). https://doi.org/10.1007/
978-3-662-47666-6_24, https://doi.org/10.1007/978-3-662-47666-6_24

30. Kupferman, O.: Using the past for resolving the future. Frontiers Comput. Sci. 4
(2022). https://doi.org/10.3389/fcomp.2022.1114625, https://doi.org/10.
3389/fcomp.2022.1114625

31. Kupferman, O., Vardi, M.Y.: Verification of fair transition systems. Chic. J. Theor.
Comput. Sci. 1998 (1998), http://cjtcs.cs.uchicago.edu/articles/1998/2/
contents.html

32. Lehtinen, K., Parys, P., Schewe, S., Wojtczak, D.: A recursive approach to
solving parity games in quasipolynomial time. Log. Methods Comput. Sci.
18(1) (2022). https://doi.org/10.46298/lmcs-18(1:8)2022, https://doi.org/
10.46298/lmcs-18(1:8)2022

33. Lehtinen, K., Zimmermann, M.: Good-for-games ω-pushdown automata. Log.
Methods Comput. Sci. 18(1) (2022). https://doi.org/10.46298/lmcs-18(1:3)
2022, https://doi.org/10.46298/lmcs-18(1:3)2022

34. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975),
http://www.jstor.org/stable/1971035

35. Milner, R.: An algebraic definition of simulation between programs. In: Cooper,
D.C. (ed.) Proceedings of the 2nd International Joint Conference on Artificial
Intelligence. London, UK, September 1-3, 1971. pp. 481–489. William Kaufmann
(1971), http://ijcai.org/Proceedings/71/Papers/044.pdf

36. Prakash, A., Thejaswini, K.S.: On history-deterministic one-counter nets. In:
Kupferman, O., Sobocinski, P. (eds.) Foundations of Software Science and Com-
putation Structures - 26th International Conference, FoSSaCS 2023, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2023, Paris, France, April 22-27, 2023, Proceedings. Lecture Notes in Computer
Science, vol. 13992, pp. 218–239. Springer (2023). https://doi.org/10.1007/
978-3-031-30829-1_11, https://doi.org/10.1007/978-3-031-30829-1_11

37. Schewe, S.: Beyond hyper-minimisation—minimising dbas and dpas is np-complete.
In: Lodaya, K., Mahajan, M. (eds.) IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2010, December
15-18, 2010, Chennai, India. LIPIcs, vol. 8, pp. 400–411. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2010). https://doi.org/10.4230/LIPIcs.FSTTCS.2010.
400, https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400

38. Schewe, S.: Minimising Good-For-Games Automata Is NP-Complete. In: Saxena,
N., Simon, S. (eds.) Proceedings of FSTTCS. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 182, pp. 56:1–56:13. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.
FSTTCS.2020.56, https://drops.dagstuhl.de/opus/volltexte/2020/13297

39. Seidl, H., Niwinski, D.: On distributive fixed-point expressions. RAIRO Theor.
Informatics Appl. 33(4/5), 427–446 (1999). https://doi.org/10.1051/ita:
1999101, https://doi.org/10.1051/ita:1999101

40. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Pre-
liminary report. In: Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Har-
rison, M.A., Karp, R.M., Strong, H.R. (eds.) Proceedings of the 5th Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin,

https://doi.org/10.1007/978-3-662-47666-6\_24
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1007/978-3-662-47666-6\_24
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.3389/fcomp.2022.1114625
https://doi.org/10.3389/fcomp.2022.1114625
https://doi.org/10.3389/fcomp.2022.1114625
https://doi.org/10.3389/fcomp.2022.1114625
http://cjtcs.cs.uchicago.edu/articles/1998/2/contents.html
http://cjtcs.cs.uchicago.edu/articles/1998/2/contents.html
https://doi.org/10.46298/lmcs-18(1:8)2022
https://doi.org/10.46298/lmcs-18(1:8)2022
https://doi.org/10.46298/lmcs-18(1:8)2022
https://doi.org/10.46298/lmcs-18(1:8)2022
https://doi.org/10.46298/lmcs-18(1:3)2022
https://doi.org/10.46298/lmcs-18(1:3)2022
https://doi.org/10.46298/lmcs-18(1:3)2022
https://doi.org/10.46298/lmcs-18(1:3)2022
https://doi.org/10.46298/lmcs-18(1:3)2022
http://www.jstor.org/stable/1971035
http://ijcai.org/Proceedings/71/Papers/044.pdf
https://doi.org/10.1007/978-3-031-30829-1\_11
https://doi.org/10.1007/978-3-031-30829-1_11
https://doi.org/10.1007/978-3-031-30829-1\_11
https://doi.org/10.1007/978-3-031-30829-1_11
https://doi.org/10.1007/978-3-031-30829-1_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://drops.dagstuhl.de/opus/volltexte/2020/13297
https://doi.org/10.1051/ita:1999101
https://doi.org/10.1051/ita:1999101
https://doi.org/10.1051/ita:1999101
https://doi.org/10.1051/ita:1999101
https://doi.org/10.1051/ita:1999101


Checking History-Determinism is NP-hard for Parity Automata 23

Texas, USA. pp. 1–9. ACM (1973). https://doi.org/10.1145/800125.804029,
https://doi.org/10.1145/800125.804029

https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029


24 Aditya Prakash

A Appendix for Section 4

Lemma 20. The following problems are NP-hard:

1. Given a parity automaton A, does Eve win the 1-token game of A?
2. Given a parity automaton A, does Eve win the 2-token game of A?

Proof. As in the proof of Lemma 13, consider a good 2-D parity game G, and let
H and D be automaton constructed in Section 3, which is such that Eve wins G
if and only if H simulates A. From Lemma 13, we also know that Eve wins G if
and only if H is HD. We will show that the following holds:

1. if H is history-deterministic, then Eve wins the 1-token game and the 2-token
game of H,

2. if H is not history-deterministic, then Adam wins the 1-token game and the
2-token game of H.

(1) is easy to see, since if H is history-deterministic, then Eve can use her letter
game strategy to pick transitions on her token in the 1-token game or the 2-token
game, ignoring Adam’s tokens.

For (2), we show that Adam wins the 1-token game of H if H is not HD. This
would imply that Adam wins the 2-token game of H as well, since he can use
his strategy in 1-token game to win the 2-token game as follows: he copies Eve’s
transitions in his second token and follows his strategy in the 1-token game of
H to choose the letters and transitions on his first token.

Since Adam wins the letter game of H, we know that H does not simulate
D. Fix a winning strategy σ∀∀∀ of Adam in the simulation game. We now describe
how Adam can win the 1-token game of H by using σ∀∀∀. At a high level, Adam
will exploit the nondeterminism on $ to ensure his token eventually moves to
D and traces out an accepting run, while picking letters according to σ∀∀∀ and
ensuring Eve’s run on her token is rejecting.

In more details, Adam in the 1-token game will keep a play of the game
Sim(H,D) in his memory in order to pick the letters and transitions in the 1-
token game of H. He picks letters in the 1-token game of H using σ∀∀∀, by viewing
Eve’s transitions in the 1-token game as transitions on H in Sim(H,D). Note
that since D is deterministic, Adam’s transitions in D in Sim(H,D) depends
solely on Adam’s choice of letters. For Adam’s token in the 1-token game, he
copies Eve’s transitions till Eve hasn’t had to resolve nondeterminism, i.e., there
is a unique transition from Eve’s state on Adam’s letter in the corresponding
round. Eventually, however, there must be a round where Eve would need to
resolve nondeterminism: otherwise, since L(D) = L(H), Eve would construct an
accepting run if the word is accepting, and in particular, if Adam’s run on his
token is accepting.

Thus, let Eve’s token be at the state q when she needed to resolve the non-
determinism. Then, Adam’s token is also at q, and by construction, we know
that q = vH for some v ∈ V∃∃∃. In the corresponding simulation game Sim(H,D)
in Adam’s memory, his state is v$. Now, Adam gives the letter $, and his state



Checking History-Determinism is NP-hard for Parity Automata 25

in the simulation game is then updated to vD, while Eve picks a transition
vH

$:0
−−! (vH , f) where f = (v, w) is an outgoing edge from v. Adam will then

pick a transition vH
$:0
−−! (vH , f ′) for some edge f ′ ̸= f on his token.

In the next round, Adam must pick the letter f according to σ∀∀∀, or Adam’s
state and Eve’s state in Sim(H,D) would both be the same and in D, causing
Eve to win, which is a contradiction since σ∀∀∀ is a winning strategy. This causes
Adam’s state in D in Sim(H,D) to be wD. In the 1-token game, Eve’s token goes
to wH and Adam’s token goes to wD—same as his state in Sim(H,D). From
here, Adam can continue choosing letters according to σ∀∀∀, while his transitions
are uniquely determined. Since σ∀∀∀ is a winning strategy, Eve’s run on her token
is rejecting, while Adam’s run ρ in D in Sim(H,D) is accepting. Since the run
of Adam’s token eventually coincides with ρ, it is accepting as well, and hence
Adam wins the 1-token game.

B Appendix for Section 5

Lemma 17. The Zielonka tree Zd2 has (⌈d2

2 ⌉) many leaves and its height is d2.

Proof. We prove the lemma by induction on d2. When d2 is 0 or 1, the tree Zd2

is as shown below in Fig. 2, and the induction hypothesis is clearly satisfied.

{1, 2} × [0]

{1, 2} × [1]

{1, 2} × [0] {1} × [1]

Fig. 2. Zielonka trees Z0 and Z1

Let d2 ≥ 2, and suppose that the lemma holds for all d′ < d2. We distinguish
between the cases of when d2 is even or odd.

If d2 = 2k for some k > 0, then the root of the node is labelled by the set
[1, 2]× [2k], which is in F . Then, the only maximal set which is a proper subset
of [1, 2] × [2k] and not in F is [1, 2] × [2k − 1]. Thus, the child c of the root is
labelled [1, 2]× [2k−1] and c is then the root of the tree Z2k−1 itself (see Fig. 3).
By induction hypothesis, the tree Z2k−1 has height 2k − 1 and k leaves, and
hence, the tree Z2k has height 2k − 1 + 1 = 2k and k leaves, as desired.

If d2 = 2k + 1 for some k > 0, then the root of the node is labelled by the
set [1, 2]× [2k+1], which is not in F . Now, there are two maximal sets that are
proper subsets of [1, 2]× [2k+1] and are in F : the set {1}× [2k+1] which then
has no proper subsets that are not in F , and the set {1, 2} × [2k]. Accordingly,
the root of Z2k+1 has two children, one labelled by {1, 2}× [2k] that is then the
the root of the tree Z2k, and another labelled {1}× [2k+1], as shown in Fig. 4.



26 Aditya Prakash

{1, 2} × [2k]

Z2k−1

Fig. 3. Zielonka tree Z2k

By induction hypothesis, the tree Z2k has height 2k and k leaves, and hence, the
tree Z2k+1 has height 2k + 1 and k + 1 leaves, as desired.

{1, 2} × [2k + 1]

Z2k

{1} × [2k + 1]

Fig. 4. Zielonka tree Z2k+1


	Checking History-Determinism is NP-hard  for Parity Automata

