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Abstract. We consider the model of history-deterministic one-counter
nets (OCNs). History-determinism is a property of transition systems
that allows for a limited kind of non-determinism which can be resolved
‘on-the-fly’. Token games, which have been used to characterise history-
determinism over various models, also characterise history-determinism
over OCNs. By reducing 1-token games to simulation games, we are able
to show that checking for history-determinism of OCNs is decidable.
Moreover, we prove that this problem is PSPACE-complete for a unary
encoding of transitions, and EXPSPACE-complete for a binary encod-
ing and undecidable for one-counter automata (OCA), which are OCNs
that can test for zeroes.
We then study the language properties of history-deterministic OCNs.
We show that the resolvers of non-determinism for history-deterministic
OCNs are eventually periodic. As a consequence, for a given history-
deterministic OCN, we construct a language equivalent deterministic
OCA. We also show the decidability of comparing languages of history-
deterministic OCNs, such as language inclusion and language universal-
ity.

Keywords: History-determinism · Token games · One-counter nets ·
One-counter automaton.

1 Introduction

While deterministic automata are algorithmically efficient for problems such as
synthesis or for solving games, they are often much less succinct, or less expressive
than their non-deterministic counterparts. As such, many intermediate models
between determinism and non-determinism have been studied [1,2,3,4,5], with
history-determinism being one such well-studied notion over the recent years.
History-deterministic automata over infinite words with parity acceptance con-
dition was introduced by Henzinger and Piterman as a tool to solve verification
games, although dubbed good-for-games in their work [6]. Such automata are
known to be exponentially more succinct than their deterministic counterpart [7],
and are known to form a robust class of automata that is both algorithmically
and conceptually interesting [6,8,9,7,10,11,12,13,14].

The notion of history-determinism emerged independently in the setting of
cost automata that can capture all regular cost functions as opposed to their
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deterministic version [15]. Recently, history-determinism has been studied in
quantitative settings [16,17], as well as infinite-state systems such as pushdown
automata [18,19], Parikh automata [20], and timed automata [21,22], where they
are often more succinct and expressive than their deterministic counter part.

One-counter nets are finite-state systems along with a counter that stores a
non-negative integer value which can never be explicitly tested for zero. They
correspond to 1-dimensional VASS, Petri nets with exactly one unbounded place,
and are a subclass of one-counter automata which do not have zero tests, and
hence are also a subclass of pushdown automata. They are one of the simplest
infinite-state systems, and hence many problems pertaining to one-counter nets
are easier than models that subsume them.

The structure of the resolvers that resolve non-determinism on-the-fly are cru-
cial to understand history-determinism in various models. While for automata
over infinite words with parity conditions, these resolvers take the shape of deter-
ministic parity automata [6], the situation for resolvers in history-deterministic
infinite-state systems is not as well understood. Indeed, the computability of
such a resolver for a given history-deterministic pushdown automaton is left as
an open problem in the works of Guha, Jecker, Lehtinen and Zimmermann [18].
For history-deterministic Parikh automata, it is still an open problem if the re-
solver can be given by a deterministic Parikh transducer [20]. Moreover, many
other problems such as deciding history-determinism or even language inclu-
sion among history-deterministic automata are undecidable for pushdown au-
tomata and Parikh automata [18,19,20]. We consider history-determinism over
one-counter nets, where we are able to answer positively to all of the above
questions.

To answer several of these questions, we use results and techniques from the
simulation problem over one-counter nets [23,24]. This is not surprising, since
simulation of various models has close ties with history-determinism [6,21].

Our Contribution We study history-deterministic OCNs and establish them as
a class of infinite-state systems where many problems pertaining to history-
determinism are decidable. This is unlike many other classes of history-deter-
ministic infinite-state systems that have been studied so far.

Firstly, we show that checking for history-determinism of a given one-counter
net is PSPACE-complete when the transitions are encoded in unary, and is
EXPSPACE-complete for a more succinct encoding (Theorem 4, Theorem 26).
We achieve the upper bound by giving a novel reduction from the one-token
game [11] to the simulation problem over OCNs. One-token games characterise
history-determinism over OCNs, and thus our reduction further extends the link
between history-determinism and simulation. This decidability result is in con-
trast to one-counter automata (OCA), where checking for history-determinism
becomes undecidable by just adding zero-tests to OCNs (Theorem 27).

Secondly, we show that resolvers for non-determinism in history-deterministic
OCNs can be expressed as an eventually periodic set. Using this, we are able to
determinise history-deterministic OCNs to give a language equivalent determin-
istic OCA.
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Finally, we show the problems of language inclusion and language univer-
sality for history-deterministic OCNs to be in PSPACE and P respectively.
This is in unlike non-deterministic OCNs, where these problems are known to
be undecidable and Ackermann-complete respectively. Even for the class of de-
terministic OCA—which we show history-deterministic OCNs can be converted
to—the inclusion problem is known to be undecidable.

Good-for-Gameness A notion closely related to history-determinism (HD) is
that of good-for-gameness. An automaton is said to be good-for-games (GFG)
if its composition with a game whose acceptance condition is given by the lan-
guage of the automaton yields an equivalent game. For parity automata over
infinite words, these two notions are known to be equivalent [6,25], but they
do not coincide on all models [16]. For the purposes of our paper, we deal with
history-deterministic OCNs, as in our setting the notion of history-determinism
is equivalent to good-for-gameness when composition with infinitely branching
games is considered [26]. We note however, that this is not true when composi-
tionality is restricted to only finitely branching games [26].

2 Preliminaries

We use N to denote the set of positive integers and N0 to denote non-negative
integers. An alphabet, denoted by Σ, is any finite non-empty set of letters, and
the set of all finite words over Σ is denoted by Σ∗. The empty word over Σ is
denoted by ϵ, and we use Σϵ to denote the set Σ ∪ {ϵ}. A language L over Σ is
a subset of Σ∗.

Labelled Transition System A labelled transition system (LTS) is a tuple S con-
sisting of S = (Q,Σ,!, q0, F ). In this paper, we assume that Q is a (countable)
set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, Σ is a
finite alphabet, !⊆ Q×Σϵ ×Q is the set of transitions.

If a transition (q1, a, q2) belongs to !, we instead represent it as q1
a
−! q2

as well. On a finite word w, a ρ is said to be a run of the labelled transition
system S if it is a finite alternating sequence of states and letters of Σ: ρ =
q0

a0−! q1
a1−! . . . qk−1

ak−! qk, where each i, qi
ai−! qi+1 ∈! and ai ∈ Σϵ such

that w = a0 · a1 . . . ak. A run ρ described above is accepting if the state qk ∈ F .
An LTS that has no ϵ-transitions is said to be a realtime LTS. For an LTS

S = (Q,Σ,!, q0, F ) being realtime, we have !⊆ Q×Σ ×Q. Unless mentioned
otherwise, we mostly deal with realtime LTS for the sake of a simpler presenta-
tion. An LTS S = (Q,Σ,!, q0, F ) is deterministic if ! is a function from Q×Σ
to Q and not just a relation.

Two player games Throughout the paper, we will be using two player games on
countably sized arenas, between the players Adam and Eve, denoted by ∀∀∀ and
∃∃∃ respectively. The winning condition will be a reachability condition for one of
the players, often ∀∀∀. These can be interpreted as a Gale-Stewart games [27] and
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we know that such games are determined, that is they have a winner, which is
either ∀∀∀ or ∃∃∃. Moreover, each of the players have a positional strategy, where
their current strategy depends on their positions in the current arena. We say
that two games are equivalent, if they have the same winner.

One-Counter Automata A one-counter automaton (OCA) A is given by a tuple
A = (Q,Σ,∆, q0, F ), where Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, Σ is a finite alphabet, and ∆ is the set of
transitions, given as a relation ∆ ⊆ Q× {zero,¬zero} ×Σ × {−1, 0, 1} ×Q.

Here, the symbols zero and ¬zero are used to distinguish between transitions
that can happen when the counter value is 0, and when the counter value is
positive respectively. One can think of the counter as a stack, where the stack
has a distinguished bottom-of-the-stack symbol, which cannot be popped. The
configurations in the automaton are given by pairs (q,m), where q denotes the
current state, and m ∈ N0 denotes the counter value. We use C(A) to denote the
set of configurations of A.

A one-counter automaton generates an infinite-state LTS over the set of
configurations Q × N, such that the transitions are as defined below. For each
configuration (q,m), upon reading a ∈ Σϵ,

– if m > 0, takes a transition of the form (q,¬zero, a, d, q′), where d ∈ {−1, 0, 1}
to (q′,m+ d);

– if m = 0, takes a transition of the form (q, zero, a, d, q′), where d ∈ {0, 1} to
(q′,m+ d).

For two configurations c, c′ ∈ C(A) = Q × N0, we use the notation c
a,d
−−! c′ to

denote the fact that c′ can be reached from c upon taking some transition δ ∈ ∆

upon reading a, with a change of counter value d. We shall also say that c a,d
−−! c′

is a transition in A, as c
a,d
−−! c′ is a transition in the infinite LTS of A. We thus

view A as both an automaton and a LTS (generated by A), and switch between
these two notions interchangeably. A run of A over a word w is a finite sequence
of alternating configurations and transitions : ρ = c0

a0,d0−−−! c1 · · · cn
an,dn−−−−! cn+1

such that a0a1 · · · an = w, and c0 = (q0, 0). The run ρ is an accepting run if
its last configuration cn+1 = (qn+1, kn+1) is accepting, i.e. qn+1 ∈ F . We say a
word w is an accepting word in A if it has an accepting run in A. Finally, we
define the language of A, denoted by L(A) to be the set of all accepting words
in A. We say that A is a deterministic one-counter automaton, if ∆ is a (partial)
function from Q× {zero,¬zero} ×Σ to {−1, 0, 1} ×Q.

One-counter nets The model of one-counter nets (OCNs) can be interpreted as
a restriction added to one-counter automaton that do not have the ability to
test for zero. Alternatively, one can view this as a finite-state automaton that
has access to a stack which can store only one symbol and no bottom-of-the-
stack element. Any feasible run cannot pop an empty stack. More formally, a
one-counter net N is a tuple (Q,Σ,∆, q0, F ) where Q is the set of finite states,
Σ is a finite alphabet, q0 ∈ Q is the initial state and F ⊆ Q is the set of final or
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accepting states. The set ∆ ⊆ Q×Σ × {−1, 0, 1} ×Q are the transitions in the
net N .

The configurations of an OCN are similar to that of an OCA. It consists of
a pair (q, n) ∈ Q× N0. We shall use the notation C(N ) = Q× N0 to denote the
set of configurations of N . From a configuration (q, n), we reach a configuration
(p, n+ d) in one step, if there is a transition δ = (q, a, d, p), for some a ∈ Σ and
d ∈ {−1, 0,+1} and n + d ≥ 0. We can define a run on an OCN, an accepting
run and an accepting word similar to an OCA. We say an OCN N is complete if
for every configuration c ∈ C(N ) and every letter a ∈ Σ, there exists a transition
c

a,d
−−! c′.

Remark 1. For the most of the paper we talk about one-counter nets (automata)
with unary transitions, i.e. transitions that increment or decrement the counter
by at most 1. However, they are as expressive as succinct models where the one-
counter net has a binary encoding, i.e. when the transitions allow the counter
to be incremented or decremented by positive integers represented in binary.
This can be observed, for instance, by giving a construction similar to that of
Valiant’s for deterministic pushdown automata ([28], Section 1.7).

History-Deterministic One-Counter Nets We define history-determinism in the
setting of one-counter net. Informally, an OCN N is history-deterministic, if the
non-deterministic choices required to accept a word w which is in L(N ) can be
made on-the-fly. These choices depend only on the word read so far, and do not
require the knowledge of the future of the word to construct an accepting run
for a word in L(N ) (hence the term history-determinism). Formally, we say an
OCN N is history-deterministic, if ∃∃∃ wins the letter game on N defined below.

Definition 2 (Letter game for OCN). Given an OCN N = (Q,Σ,∆, q0, F ),
the letter game on N is defined between the players ∀∀∀ and ∃∃∃ as follows: the
positions of the game are C(N ) × Σ∗, with the initial position ((q0, 0), ϵ). At
round i of the play, where the position is (ci, wi):

– ∀∀∀ selects ai ∈ Σ
– ∃∃∃ selects a transition δ which can be taken at the configuration ci on reading

ai, i.e. ci
ai,di−−−! ci+1

If ∃∃∃ is unable to choose a transition (i.e. there is no ai transition at the config-
uration ci in the LTS generated by the net N ), and wi+1 = wiai is the prefix of
an accepting word, ∃∃∃ loses immediately. The player ∀∀∀ wins immediately when the
word wi+1 is accepting but the configuration ci+1 is not at an accepting state, and
the game terminates. The game continues from (ci+1, wi+1) otherwise. Player ∃∃∃
wins any infinite play.

We say a strategy for ∃∃∃ in the letter game of N is a resolver for N , if it is a
winning strategy for ∃∃∃ in the letter game.

Our characterization of history-deterministic one-counter nets by the above
letter game is slightly different from the one presented in the work of Guha,
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Jecker, Lehtinen, and Zimmermann [18] for pushdown automata. In their work,
they define history-determinism as having a consistent strategy based on the
transitions taken so far. It is easy to argue that these two definitions are equiv-
alent.

The letter game can be formulated as a reachability game over countably
many vertices, where the player ∀∀∀ is trying to reach a position of the form
(c, w) ∈ C(N )×Σ∗, where c is at a rejecting state, while w is accepting. As such
games are determined [27], the notion of history-determinism formulated as ∃∃∃
winning the letter game is well-defined.

Letter games have been used extensively to characterise history-determinism
for other models as well, such as parity automata [6] and for various kinds of
quantitative and timed automata on both finite and infinite words [12,16,21].

To aid our understanding of history-determinism as well as the above defi-
nition, we provide an example of a game where ∃∃∃ wins the letter game on this
automaton but the strategy is based on her counter configuration.

Example 3. Consider the language

L =

{
an$bn1$bn2$ . . . $bnk$ |

k∑
i=1

ni ≤ n or nk = 2,
k−1∑
i=1

ni = n− 1

}

which can be accepted by a history-deterministic OCN as shown in Figure 1. The
initial state is indicated with an arrow pointing to it, and the final states are
double-circled. Missing transitions are assumed to go to a rejecting sink state.
In the corresponding letter game, ∀∀∀ plays the letter a several times, say n-many
times followed by a $. The corresponding transitions so far are deterministic.
Later, ∀∀∀ reads some series of bs and $s, such that the word continues to be in
the language. Note that the non-determinism occurs in only one state, which
is marked with an X, upon reading the letter b. A winning strategy of ∃∃∃ which
proves that this net is history-deterministic is the following: she takes the ‘down’
transition if the counter value is strictly larger than 1, but the ‘right’ transition
on b otherwise. This non-determinism can’t be resolved by removing transitions,
because removing either of the ‘down’ b-transition or the ‘right’ b-transition
changes the language accepted. We note that an equivalent deterministic OCN
exists nevertheless, where on reading a b after any $ does not change the value
of the counter, but reduces the counter by two for the second b after a $ and
reduces the counter by 1 for any b after that, until a $ is seen again.

3 Deciding History-Determinism

The main result of this section is that deciding history-determinism for a given
OCN is decidable and is PSPACE-complete as stated in the theorem below.

Theorem 4. Given a one-counter net N , checking if N is history-deterministic
is PSPACE-complete.
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Fig. 1. A history-deterministic OCN accepting L

The rest of this section is dedicated to the proof of the above statement.
The proof of showing the upper bound proceeds by a series of polynomial

time reductions as below.

Deciding history-determinism~�
Deciding if ∃∃∃ wins letter game~�

Deciding if ∃∃∃ wins 1-token gamew�
Deciding if ∃∃∃ wins simulation game

We shall define these games rigorously and prove these reductions in Subsec-
tion 3.1. Finally, since the winner of the simulation game over one-counter nets
is in PSPACE [24], this gives us the upper bound.

For the lower bound, we reduce from the problem of emptiness checking for
alternating finite-state automata over a unary alphabet to deciding if ∃∃∃ wins the
letter game.

3.1 Token Games

Deciding history-determinism efficiently for finite-state parity automata over in-
finite words has been a major area of study over the recent years. Bagnol and Ku-
pergerg [11], gave a polynomial time procedure for deciding history-determinism
when the finite automata accepts with a Büchi condition. Their underlying tech-
nique is a two-player game, called G2 or 2-token games, which they proved to
be equivalent to the letter game when the automaton is Büchi. Boker, Kuper-
berg, Lehtinen, and Skrzypczak [12] extended this to show that the game G2 is
equivalent to the letter game when the automaton is co-Büchi as well. Deciding
the winner in G2 for an automaton of a fixed parity index takes polynomial
time [12], and hence deciding history-determinism for the cases of when the par-
ity automata accepts words based on Büchi or co-Büchi condition is polynomial.
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It is conjectured that winning G2 is equivalent to the letter game for higher
parity indices as well, and this is known as the G2 conjecture [12]. Token games
have also been instrumental in deciding history-determinism for quantitative
automata, in the works of Boker and Lehtinen [17]. In their paper, they show
that for finite words on a finite-state boolean automaton, history-determinism is
characterised by G1. This was later adapted to labelled transition systems with
safety acceptance condition, in the works of Henzinger, Lehtinen, and Totzke [21].
Thus, the 1-token games also characterise history-determinism for OCNs over
finite words. We include a proof nonetheless, for the sake of completeness.

In a play of the letter game, ∀∀∀ picks the letters while ∃∃∃ picks the transitions,
and the winning condition for ∃∃∃ is to produce an accepting run for any word that
is in the language. Token games work similarly, but they impose more constraints
on ∀∀∀. This is done by asking him to also display a valid run during the game with
the help of some number of tokens. Here, we concentrate on the 1-token game
G1. The player ∀∀∀ wins the game G1 if and only if he produces an accepting run,
whilst ∃∃∃ produces a rejecting run. We make this more formal in the definition
below.

Definition 5 (One token game G1). Let N = (Q,Σ,∆, q0, F ) be a one-
counter net. The positions of the game G1 on N are a pair of configurations,
C(N ) × C(N ), where the first configuration in the pair denotes the position of
∃∃∃’s token, and the second ∀∀∀’s token. The game starts with the initial position
(c∃∃∃0 , c

∀∀∀
0) = ((q0, 0), (q0, 0)). At the ith iteration of the play, where the position is

(c∃∃∃i , c
∀∀∀
i ):

1. ∀∀∀ selects a ∈ Σ

2. ∃∃∃ selects a transition for her token, c∃∃∃i
a,d
−−! c∃∃∃i+1

3. ∀∀∀ selects a transition for his token, c∀∀∀i
a,d′

−−! c∀∀∀i+1

If ∃∃∃ is unable to choose a transition for her token whereas ∀∀∀ can choose a tran-
sition and extend the run on his token to an accepting run, then the game ter-
minates and ∃∃∃ loses the game. However, irrespective of ∃∃∃’s ability to extend her
run, if ∀∀∀ is unable to choose a transition for his token, then the game again
terminates but ∀∀∀ loses the game.

If both the players can extend their runs by picking a transition then and if
∀∀∀’s state in c∀∀∀i+1 is accepting, but ∃∃∃’s state in c∃∃∃i+1 is rejecting then again the
game terminates and ∃∃∃ loses the game. Else, the game goes to (ci+1, c

′
i+1) for

another round of the play. We add that ∃∃∃ wins any infinite play.

Letter games can be seen as a version of token games where ∀∀∀ plays with infinitely
many tokens. We show in the following lemma that one-token games—even with
this limited power of ∀∀∀—can capture letter games.

Lemma 6. For an OCN N , if ∃∃∃ wins the game G1 on N , then ∃∃∃ has a winning
strategy in the letter game.
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To prove the above lemma, we need to understand better the structure of the
resolvers for OCNs. Consider the definition given below of residual transitions.
Intuitively, these are transitions such that if there was an accepting word from a
configuration with the first letter as a, then upon taking a residual transition on
a, there is still an extension of the run on the word from the new configuration
that is accepting. More formally, we say that a transition (q, k)

a,d
−−! (q′, k′)

is residual if L(q′, k′) = a−1L(q, k), where L(q, k) (and L(q′, k′)) is the set of
words that are accepted in N when the initial configuration is (q, k) ((q′, k′)),
instead of (q0, 0). The proposition below shows any winning strategy of ∃∃∃ can be
characterised by these residual transitions.

Proposition 7. For an OCN N , an ∃∃∃ strategy σ in the letter game is winning
for ∃∃∃ if and only if σ takes only residual transitions.

Note that in the letter game, each player winning the game has a positional
winning strategy, as it is a reachability game. Suppose that ∃∃∃ wins the letter
game, then ∃∃∃ has a winning strategy which can be given by a (partial) function
σ : (Q×N)×Σ∗ ×Σ ! ∆. Using Proposition 7, we can show that ∃∃∃’s strategy
only depends on the configuration, and is independent of the word read so far.

Proposition 8. If ∃∃∃ wins the letter game, then ∃∃∃ has a winning strategy σ that
only depends on the current configuration of the play, i.e σ is a partial function
σ : (Q× N)×Σ ! ∆

Having shown that G1 is equivalent to the letter game, we show that decid-
ing the winner in the game G1 is in PSPACE. This implies deciding history-
determinism is also decidable, and in PSPACE. We do so by reducing G1 to
the simulation problem between two one-counter nets, which is known to be
PSPACE-complete ([24], Theorem 7).

Given two OCNs N and N ′ at configurations (q, n) and (q′, n′), we say N ′

simulates N (or N is simulated by N ′) from their corresponding configurations if
for any sequence of transitions from (q, n), there is also a sequence of transitions
from (q′, n′) which is built ‘on-the-fly’. This alternation between existential and
universal quantifiers in the above statement renders this definition perfect to be
captured by the following game between the players ∀∀∀ and ∃∃∃.

Definition 9 (Simulation Game). Given two OCNs N = (Q,Σ,∆, qI , F )
and N ′ = (Q′, q′0, Σ,∆′, q′I , F

′) and two configurations c = (p, k) and c′ = (p′, k′)
in C(N ) and C(N ′) respectively where k, k′ ∈ N. The simulation game between
the OCNs N and N ′ at a position (c, c′), denoted by G((N , c) ↪−! (N ′, c′)), is
a two player game between ∀∀∀ and ∃∃∃, with positions in C(N ) × C(N ′) where the
initial position is (c0, c

′
0) = (c, c′). At round i of the play, where the position is

(ci, c
′
i):

– ∀∀∀ selects a letter a ∈ Σ, and a transition ci
a,d
−−! ci+1 in N

– ∃∃∃ selects an a-transition c′i
a,d′

−−! c′i+1 in N ′
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If ∀∀∀ is unable to choose a transition, then ∀∀∀ loses the game immediately. If ∃∃∃ is
unable to choose a transition but ∀∀∀ can select a transition and extend the run in
N to an accepting run, then ∃∃∃ loses the game.

Otherwise, if ∀∀∀’s state in ci+1 is accepting but ∃∃∃’s state in c′i+1 is reject-
ing, then ∃∃∃ loses the game, and the game terminates. Else, the game goes to
(ci+1, c

′
i+1) for another round of the play. The player ∃∃∃ wins any infinite play.

If ∃∃∃ wins the above game, we say (N ′, (p′, k′)) simulates (N , (p, k)), and we
denote it by (N , (p, k)) ↪−! (N ′, (p′, k′)). Furthermore, we say N ′ simulates N
or N ↪−! N ′ if (N , (qI , 0)) ↪−! (N ′, (q′I , 0)).

As the simulation game is a reachability game over a countably sized arena,
it is determined, and the winning player has a positional strategy. Thus, if ∃∃∃
wins the above simulation game G((N , (p, k)) ↪−! (N ′, (p′, k′))), then ∃∃∃ has a
positional winning strategy σ∃∃∃ : C(N )× C(N ′)×Σ ! ∆′.

Remark 10. In the literature over one-counter nets [29,24,30], the winning con-
dition for the players on the simulation game is expressed differently, via the
inability of the players to choose transitions, rather than accepting states. The
player ∀∀∀ (∃∃∃) loses the game if ∀∀∀ (∃∃∃) is unable to choose a transition. It can
however, be shown that the two versions of the simulation games are log-space
reducible to each other.

Note the similarities (and differences) in G1 and the simulation game. In
both, the winning condition for ∀∀∀ would like ∀∀∀’s run to be accepting, while ∃∃∃’s
to be rejecting. In G1 however, ∃∃∃ is picking the transition first, while in the
simulation game, ∀∀∀ is picking the transition first.

With some modifications to the structure of the underlying net in G1, we
can ensure that the simulation game between the modified net and the original
net captures G1. The intuition is that, in the simulation game, the net which is
simulated is modified so that ∀∀∀ is forced to delay choosing his transition. This
is formalized in the proof of the following lemma, and explained with a diagram
in Figure 2.

Lemma 11. Given a one-counter net N , there are one-counter nets M and
M′, which have size at most polynomial in size of N such that ∃∃∃ wins G1 on N
if and only if ∃∃∃ wins M ↪−! M′.

Proof. (Sketch) For each run in N , we have a run in M that lags behind one
transition. The one-counter net M′ on the other hand is relatively similar to N .
We impose this “one-transition lag” in M by construction where each transition
chosen by ∀∀∀ in M corresponds to a letter along with a transition of N . But this
transition of N is over the letter that ∀∀∀ had chosen last turn. The alternation
produced between ∀∀∀ and ∃∃∃ in a play of the simulation game between M and M′

of the nets constructed corresponds exactly the alternation produced between
∀∀∀ and ∃∃∃ in G1 over N . Figure 2 captures the intuition behind this construction
discussed.

The net M′ is linear in the size of N whereas M has size approximately
N × |Σ|, where |Σ| is the size of the alphabet. This factor of |Σ| arises due to
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remembering the previous letter read in the state space to create this lag for ∀∀∀’s
decisions.

Fig. 2. An illustration of a play of G1, seen as a play of the simulation game

Finally, we see that the following theorem from the work of Hofman, Lasota,
Mayr, and Totzke [24] shows that the winner of a simulation game can be solved
in PSPACE. We recall their results to fit our notation below.

Theorem 12 ([24], Theorem 7). Given two one-counter nets N and N ′, with
configurations (p, k) and (p′, k′) in C(N ) and C(N ′) respectively, with k and k′

represented in binary, deciding whether (N ′, (p′, k′)) simulates (N , (p, k)) is in
PSPACE. Moreover, the set of (k, k′) for which (N , (p, k)) ↪−! (N ′, (p′, k′)) is
semilinear, and can be computed in EXPSPACE.

We get the following lemma as a corollary of Lemmas 6 and 11 and Theorem 12.

Lemma 13. Given a one-counter net N , we can decide in PSPACE if N is
history-deterministic.

3.2 Lower Bounds

Although solving the simulation game turns out to be PSPACE-complete itself
from the work of Srba [29], this lower bound result does not work for our reduc-
tion to simulation games. The reduction we give from G1 to simulation games
produces only a restricted class of simulation games which solve G1.

Nevertheless, we show that deciding history-determinism is still PSPACE-
hard, showing that even this restriction of the simulation problem is enough to
induce PSPACE-hardness.

Lemma 14. Given a one-counter net N , it is PSPACE-hard to decide if N is
history-deterministic.
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Proof (Sketch). We reduce from the problem of checking non-emptiness of an al-
ternating finite-state automaton over a unary alphabet. This problem was proven
to be PSPACE complete by Holzer [31], with its proof simplified by Jančar and
Sawa [32]. The intuition behind the reduction is to recreate a run of the alter-
nating automaton in the letter game of a constructed OCN. In the letter game,
a “fair” play of ∀∀∀ corresponds to a branch of a run-tree in the automaton, with
∃∃∃ resolving universal transitions and ∀∀∀ resolving existential ones. The player ∀∀∀
can ensure that he wins the letter game if and only if the alternating automaton
has some word that he can demonstrate is in the language. If ∀∀∀ plays “unfairly”,
then there are gadgets to ensure that ∃∃∃ automatically wins.

4 Languages and History-Determinism in OCNs

We dedicate this section to tackling different questions about languages accepted
by history-deterministic one-counter nets and decision problems on such lan-
guages.

4.1 Languages Accepted by History-Deterministic OCNs

While in history-deterministic models we are able to resolve the non-determinism
on-the-fly, it is not well-understood how these resolvers might look like in gen-
eral. In fact, Guha, Jecker, Lehtinen, and Zimmermann showed that there are
history-deterministic pushdown automata whose resolvers cannot be given by a
pushdown automata [18], and whether such a resolver can be computed is an
open problem.

In this sub-section, our goal is to understand better the languages of history-
deterministic OCNs. As a first-step towards this goal, we already have some
intuition from the previous section on the eventually periodic nature of the
transitions that are residual (as a corollary of Lemma 11 and Theorem 12). Here,
we solidify this intuition by defining what it means to have semilinear-strategy
property for a resolver and to then show that all nets have this property. For the
case of history-deterministic nets, using this semi-linearity of the resolvers, we
show the existence of a language-equivalent deterministic OCA.

We first show a sufficient characterisation which we call the semilinear-
strategy property, for if a given history-deterministic one-counter net can be
determinised.

We say a transition δ = (p, a, d, p′) in an one-counter net N is a good transi-
tion at (p, k), if ((p, k), (p, k)) is in the winning region of G1, and the transition
δ = (p, k)

a,d
−−! (p′, k+d) is a winning move for ∃∃∃ in G1 when ∀∀∀ chooses the letter

a. We also write this sometimes as (p, k)
a,d
−−! (p′, k + d) is a good transition in

N . The following lemma can be seen as a weakening of Proposition 7.

Lemma 15. Let N = (Q,Σ,∆, q0, F ) be a history-deterministic one-counter
net. An ∃∃∃ strategy σ in the letter game is winning for ∃∃∃ if and only if the strategy
σ only takes good transitions δ = (p, k)

a,d
−−! (p′, k′).



230 A. Prakash and K. S. Thejaswini

Given a one-counter net N , we say N satisfies semilinear-strategy property if
for each transition δ = (q, a, d, q′), the set of k ∈ N such that δ is a good transition
at (q, k) is semilinear. That is, for each transition δ = (q, a, d, q′) ∈ ∆, we have
that the following set is eventually periodic

Sδ =
{
k : (q, k)

a,d
−−! (q′, k′) is a good transition at (q, k)

}
.

Lemma 16. If a history-deterministic OCN N = (Q,Σ, q0, ∆, F ) satisfies the
semilinear-strategy property, then there is a language-equivalent deterministic
OCA D.

Proof (Sketch). We assume the history-deterministic OCN N is such that it sat-
isfies semilinear-strategy property. We shall first construct a non-deterministic
one-counter automata B, which can be determinised easily by removing a min-
imal set of transitions to get rid of non-determinism while still preserving the
language. The non-deterministic one-counter automata B would essentially be
designed so that the transitions in B correspond to the good transitions in N ,
from any configuration. The eventual periodicity of the sets Sδ allows us to
express this as a one-counter automaton, rather than as a labelled transition
system with countably many states.

Intuitively, the automaton B is constructed such that the state space of the
automaton stores in its memory the period and the initial block of the semi-
linear sets. The idea is that this automaton’s runs would be in bijection with
those runs that take only good transitions in the OCN N . We know that such
a run exists in N by Lemma 15, as N is history-deterministic. However, the
counter values in B are ‘scaled down’ to only remember how many periods have
passed, while counter value 0 indicates that the counter value in the original run
would have been at most I. The exact value of the counter in a run of N can be
inferred as a function of the state space and the counter value of B.

Having shown that every history-deterministic one-counter net that satisfies
semilinear-strategy property has a language equivalent DOCA, we proceed to
show that every one-counter net satisfies semilinear-strategy property. We first
display an example which solidifies an intuition of the above statement.

Example 17. Consider the net N7, as shown in Figure 3, where all states labelled
qF are accepting. This automaton is not history-deterministic. However, if the
counter value at q1 is not a multiple of 7, then ∃∃∃ can resolve the non-determinism
from q1. Observe that the automaton accepts words of the form an$bk$ · (♡,♣)
such that k ≤ n. Consider the following play of ∀∀∀ in the letter game from q0:
For 7n steps he reads a, after which he reads a $. So far, all transitions are
deterministic. After that, assume he again reads, 7n many times, the letter b.
This ensures that the transition ends at the state q1 with counter value 0. If he
reads $ here, this is the only position where ∃∃∃ has a choice. Note that she has
to choose between transitions leading to q♡ and q♣. However, since both the
suffixes ♡ and ♣ are accepting and only one of ♡ or ♣ is accepting from either
states, ∀∀∀ can ensure ∃∃∃ loses no matter what she picks. However, if ∀∀∀ had read a
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Fig. 3. The one-counter net N7 from Example 17

number of ‘b’s that was not a multiple of 7, the play of an accepting word would
end at q$ which is accepting.

Lemma 18. Every one-counter net N satisfies semilinear-strategy property.

The proof of the above lemma follows from Theorem 12 on using a construction
similar to the proof of Lemma 11 along wit. As an easy corollary of the above
two lemmas, we get the following theorem.

Theorem 19. Every history-deterministic OCN can be determinised to produce
an equivalent deterministic OCA.

An easy analysis of our proof combined with the results on the representation
of simulation preorder ([24], Lemma 28) shows a doubly exponential upper bound
on the size of the equivalent deterministic OCA constructed from the proof of
the theorem above.

Remark 20. On the topic of expressivity of history-determinism, we conclude
this subsection with a remark that history-deterministic OCNs are strictly less
expressive than non-deterministic OCNs. This can be demonstrated with the
language L = {ai$bj$bk | j ≤ i or k ≤ i}. It is routine to verify that such a
language is not accepted by any history-deterministic OCN, but this language
can be accepted by a non-deterministic OCN. Note that history-determinism
itself is not the limiting factor in accepting this language, as this language is
accepted by a history-deterministic pushdown automaton [18].

4.2 Complexity of comparing languages of history-deterministic
OCNs

Comparisons between languages of non-deterministic OCNs are undecidable [23],
and even the restricted question of universality, is Ackermann-complete [33]. In
this section, we show that for history-deterministic nets, these problems are no
longer undecidable and have a significantly lower complexity when compared to
non-deterministic nets.
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Although we show that history-deterministic OCNs can be converted to a
deterministic automaton, this determinisation does not help us answer these
questions. This is because for deterministic OCAs, the problem of inclusion is
undecidable [28]. Even though equality and universality for a deterministic OCA
is NL-complete [34], the resulting deterministic OCA we get from determinisa-
tion of history-deterministic OCNs could be much larger than our input net,
leading to a larger complexity.

Nevertheless, we show that checking for language inclusion, and hence check-
ing language equivalence between two history-deterministic one-counter nets is in
PSPACE. This is done by giving a polynomial-time reduction to the problem of
deciding history-determinism, which we showed to be in PSPACE in Lemma 13.
Moreover, combining our techniques with results of Kucera [35] gives us decid-
ability in P for checking language universality of HD-OCNs.

Lemma 21. Deciding language inclusion and language equivalence between two
history-deterministic one-counter nets is in PSPACE.

We can show that the problem of checking language inclusion between two
history-deterministic OCNs reduces to checking if a larger OCN (linear in the
sum of the size of the two OCNs) is history-deterministic. Since language equiv-
alence is essentially checking language inclusion both ways, we have the above
results.

Lemma 22. Deciding language universality for a given history-deterministic
one-counter net is in P.

The problem of universality reduces to checking if the input net M simulates a fi-
nite state automata. This problem was shown to be P by Kucera ([35], Lemma 2),
showing that universality is in P.

We therefore have the following theorem.

Theorem 23. For nets H and H′ that are history-deterministic, the problem of
checking if L(H) ⊆ L(H′) as well as checking if L(H) = L(H′) can be done in
PSPACE. If H is instead a deterministic finite-state automaton, this problem
can be solved in P.

We summarise known results and complexity of relevant results for comparison
with other automata models in Table 1.

5 Extensions and Variations of OCN

We revisit the question of deciding history-determinism in this section for one-
counter nets and its variants. In the first subsection, we tackle the question of how
the complexity changes if the nets are encoded succinctly. We show that as ex-
pected, this increases the complexity of the problem from PSPACE-complete to
EXPSPACE-complete. We then answer affirmatively to the question of whether
adding zero-tests add too much power to one-counter nets by showing that the
problem of deciding history-determinism becomes undecidable.
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L ⊆ L′ L = L′ L = Σ∗

DOCN NL-complete [33] NL-complete [33] NL-complete [33]
HOCN In PSPACE In PSPACE In P

OCN Undecidable [28] Undecidable [23] Ackermann-complete [33]
DOCA Undecidable [28] NL-complete [36] NL-complete [36]

Table 1. Complexities for the problems of deciding language inclusion, equivalence
and universality over deterministic OCN, HD-OCN, non-deterministic OCN and de-
terministic OCA.

5.1 Succinct Encoding of Counters

We consider a succinct representation of the input nets or a succinct one-counter
net, where the transitions can allow for increments or decrements by integers
(potentially greater than 1) that are represented in binary. Unsurprisingly, we
show that checking for history-determinism becomes EXPSPACE-complete in
this case. The upper bound follows from the previous proof of the PSPACE
upper bound from Lemma 13 of deciding history-determinism for one-counter
nets, where counter values are in unary. Any succinct one-counter net can be
converted with only an exponential blow-up into another language equivalent
net with unary encoding, preserving history-determinism thereby giving us an
EXPSPACE upper bound.

Proposition 24. Given a succinct one-counter net N ,deciding if N is history-
deterministic is in EXPSPACE.

However, much more work is needed to show a matching lower bound, which
we do by giving a reduction from reachability games on succinct one-counter
nets (SOCN). Intuitively, these games are played on the configuration graphs
of a succinct OCN whose alphabet is a singleton. The states of this SOCN are
partitioned among two players, denoted by ∧ and ∨ who are responsible for
choosing the transition from that state. The goal of ∨ is to take the play to
a designated winning state with value 0. This problem of deciding the winner
in the SOCN-reachability game was shown to be EXPSPACE-complete by
Hunter [37] and later, several of its variants were also shown to have the same
complexity [30]. A polynomial reduction from checking for history-determinism
in a SOCN gives us EXPSPACE-hardness.

Lemma 25. Given a SOCN N , deciding if N is history-deterministic is
EXPSPACE-hard.

Proof (Sketch). Given an instance of a SOCN-reachability game on N , We
construct a SOCN M such that ∨ wins in the SOCN-reachability game on N if
and only if ∀∀∀ wins in the letter game on M.

The high-level idea of the construction is such that in a play of the letter
game on M, the players ∀∀∀ and ∃∃∃ create a transcript of a run of N . This is done
by ∀∀∀ ensuring that picking the letters in M corresponds to picking a transition
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out of ∨ states in N . Since ∃∃∃ resolves the non-determinism in the letter game
on M, her choice of transitions correspond to transitions out of a ∧ state in the
SOCN-reachability game.

However, there are some subtleties in the construction as we need to ensure
a few important aspects while constructing M. Firstly, any sequence of letters
chosen by ∀∀∀ in M’s letter game so far must correspond to a run in N and
secondly, the interplay between ∃∃∃’s and ∀∀∀’s choices in the letter game of M
must correspond to the choices of the player ∧ and ∨ respectively in the SOCN-
reachability game of N . These are the main challenges while constructing such
an OCN N and they are resolved by the use of a few gadgets.

We conclude this subsection by combining Proposition 24 and Lemma 25 to
obtain the following theorem.

Theorem 26. Given a SOCN N , deciding if N is history-deterministic is
EXPSPACE-complete.

5.2 Deciding History-Determinsm for OCA

We show that, given a one-counter automaton A, deciding if A is history-
deterministic is undecidable. It was shown by Guha, Jecker, Lehtinen, and Zim-
mermann [18] that deciding if a given non-deterministic pushdown automaton is
history-deterministic is undecidable. This extends their result to OCAs, which
follows via a reduction from checking for language inclusion for deterministic
one-counter automata (DOCA), which is known to be undecidable [28].

Theorem 27. Given an OCA A, deciding if A is history-deterministic is un-
decidable.

Proof (Sketch). Consider the following problem :

DOCA Inclusion: Given two DOCAs A and B, is L(A) ⊆ L(B)?

The above problem was shown to be undecidable in Section 5.1 of Valiant’s
thesis [28]. We show that the problem of deciding if a given one-counter automa-
ton is history-deterministic is also undecidable, by giving a reduction from the
DOCA inclusion problem to checking for history-determinism of a given OCA.

6 Discussion

We showed several decision problems related to history-determinism to be de-
cidable over OCNs. This is unlike other classes of infinite-state systems that
subsume them, where either some or all of these problems are undecidable.

We note that we only deal with realtime nets with no ϵ-transitions, but our
results hold without too much modification when ϵ-transitions are present, as
weak simulation over OCNs can be decided in PSPACE (and EXPSPACE for
a succinct encoding), and the weak simulation pre-order is semilinear as well [24].
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We also showed that testing the counter for zero made checking for history-
determinism undecidable. Along these lines, one could ask about models like
reversal bounded one-counter automata [38], or automata with bounded number
of zero-tests, to gauge the frontier between decidability and undecidability on
these systems.

Although not obvious from the main part of the paper, we are confident that
our results could easily be extended to safety acceptance conditions. One could
also ask, for instance, to look at reachability or Büchi and co-Büchi acceptance
conditions and understand how history-determinism works in these models.

There are several questions about the expressivity of history-deterministic
OCNs which we believe need further study. Overloading the notation and as-
suming DOCN, DOCA, OCN, HD-OCN and HD-OCA to denote the class of
languages that are accepted by the corresponding models, we have shown that

DOCN ⊆ HD-OCN ⊆ OCN ∩ DOCA.

An interesting problem would be to prove or disprove if any of these inclusions
are strict. In fact, we don’t have an example of a language that is accepted by a
history-deterministic OCN which is not accepted by a deterministic OCN.

One could ask similar questions about expressivity of history-determinism
in OCAs, i.e. if HD-OCA = DOCA. Although deciding history-determinism is
undecidable, it might be possible for one to show that the language accepted by
a history-deterministic OCA is as expressive as deterministic OCA. We remark
that the 1-token game G1 characterises history-determinisation for OCAs as well.
Moreover, we can again show with similar techniques that if history-deterministic
OCAs satisfy the semilinear-strategy property, then these languages can also be
expressed by a deterministic OCA. The key part that we need to prove for
determinisation of history-deterministic OCA would be the semilinear-strategy
property. It would be interesting to see how such a proof would look like, given
that checking for history-determinism is undecidable for OCAs.
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